Advertisement

Temperatures Below 1°K

  • N. Kurti
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 8)

Abstract

Until the rare, light helium isotope, He3, became easily available in the early 1950’s the expression “temperatures below 1°K” was frequently used as a synonym for “cooling by adiabatic demagnetization.” There was some justification for this. It is true that even He4 permitted the attainment of temperatures somewhat below 1°K-the lowest seems to have been about 0.7°K-but this was rather the exception and a glance at the literature shows that the bulk of experiments using liquid He4 stopped near 1°K and work below this temperature relied almost entirely on the magnetic cooling method. He3 with its lower boiling point and higher vapor pressure has changed all this since quite a few He3 cryostats now operate down to 0.25°K. These cryostats are thus within the scope of this discussion. However, they will be treated rather briefly for the following reasons.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. F. Glauque, J. Am. Chem. Soc., Vol 49, 1870 (1927)CrossRefGoogle Scholar
  2. 1a.
    W. F. Glauque P. Debye, Ann. Phys., Vol. 81, 1154 (1926).Google Scholar
  3. 2.
    E. Ambler and R. P. Hudson, “Magnetic Cooling,” in Rep. Prog. Phys., Vol 18, 251 (1951);CrossRefGoogle Scholar
  4. 2a.
    E. Ambler and R. P. Hudson D. de Klerk, “Adiabatic Demagnetization,” in Encyclopedia of Physics, Vol. 15, Springer-Verlag, Berlin (1956), p. 38;Google Scholar
  5. 2.
    E. Ambler and R. P. Hudson E. Mendoza, “Magnetic Cooling,” in Experimental Cryophysics, Butterworths, London (1961), p. 165.Google Scholar
  6. 3.
    D. F. Brewer and J. R. Keyston, Nature, Vol. 191, 1261 (1961).CrossRefGoogle Scholar
  7. 4.
    R. D. Parks and W. A. Little, Proc. VII Int. Conf. Low Temperature Physics Toronto (1961), p. 114.Google Scholar
  8. 5.
    N. Kurti, Nuovo Cim. Suppl., Vol. 6, 1101 (1957);CrossRefGoogle Scholar
  9. 5a.
    N. Kurti P. W. Matthews, J. Sci. Instrum., Vol. 39, (1962).Google Scholar
  10. 6.
    N. Kurti and F. Simon, Physica, Vol. 1, 1101 (1934).CrossRefGoogle Scholar
  11. 7.
    C. J. Gorter, Phys. Z., Vol. 35, 923 (1934);Google Scholar
  12. 7.
    C. J. Gorter N. Kurti and F. Simon, Proc. Roy. Soc., Vol. A 149, 152 (1935).Google Scholar
  13. 8.
    N. Kurti, F. N. H. Robinson, F. E. Simon, and D. A. Spohr, Nature, Vol. 178, 450 (1956);CrossRefGoogle Scholar
  14. 8a.
    N. Kurti, F. N. H. Robinson, F. E. Simon, and D. A. Spohr M. V. Hobden and N. Kurti, Phil. Mag., Vol. 4, 1092 (1959);CrossRefGoogle Scholar
  15. 8b.
    N. Kurti, F. N. H. Robinson, F. E. Simon, and D. A. Spohr, Cryogenics, Vol. 1, 2 (1960)CrossRefGoogle Scholar
  16. 8c.
    N. Kurti, F. N. H. Robinson, F. E. Simon, and D. A. Spohr C. Froidevaux and J. R. Keyston, Proc. VII Int. Conf. Low Temperature Physics, Toronto (1961), p. 93;Google Scholar
  17. 8d.
    N. Kurti, F. N. H. Robinson, F. E. Simon, and D. A. Spohr J. J. Fritz, H. J. Maria, and J. G. Aston, J. Chem. Phys., Vol 34, 344 (1961).CrossRefGoogle Scholar
  18. 9.
    C. Froidevaux, E. L. Hahn, and R. Walstedt, Proc. VII Int. Conf. Low Temperature Physics, Toronto (1961), p. 118.Google Scholar

Copyright information

© Springer Science+Business Media New York 1963

Authors and Affiliations

  • N. Kurti
    • 1
  1. 1.Clarendon LaboratoryUniversity of OxfordOxfordEngland

Personalised recommendations