Advertisement

Transport Properties of He3, He4, H2, D2, T2 and Ne in the Liquid State According to the Quantum Mechanical Principle of Corresponding States

  • J. F. Kerrisk
  • J. D. Rogers
  • E. F. Hammel
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 9)

Abstract

The principle of corresponding states provides a practical method for making use of the measured properties of one or more substances to predict the properties of other substances under conditions for which no data exist and no satisfactory theoretical treatments may be applied. This principle was originally formulated by van der Waals [1] for classical systems and subsequently a method of accounting for deviations caused by quantum effects was suggested by Byk [2], The further development of the quantum mechanical principle of corresponding states has been due primarily to de Boer and his collaborators [3–5]. Their early efforts were concerned with equation of state and vapor pressure correlations and predictions, the most successful of which was the prediction of the vapor pressure and the critical parameters of He3 prior to its liquefaction [6].

Keywords

Thermal Conductivity Transport Property Saturated Liquid Positive Temperature Coefficient Isotopic Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a discussion of van der Waals’ classical law of corresponding states see H. Kamerlingh-Onnes and W. H. Keesom, Enzyklopädie der Mathematischen Wissenshaften, Vol. V, Pt. 10, Leipzig-Berlin (1912), Sections 26 and 27.Google Scholar
  2. 2.
    A. Byk, Ann. Physik, 66, 157 (1921)CrossRefGoogle Scholar
  3. 2a.
    A. Byk, Ann. Physik, 69, 161 (1922).CrossRefGoogle Scholar
  4. 3.
    J. de Boer, Physica, 14, 139 (1948)CrossRefGoogle Scholar
  5. 3a.
    See also J. de Boer, “Supplement to Vol. IX, Series X of Nuovo Cimento,” p. 200 (1958).Google Scholar
  6. 4.
    J. de Boer, and B. S. Blaisse, Physica, 14, 149 (1948).CrossRefGoogle Scholar
  7. 5.
    J. de Boer, and R. J. Limbeck, Pkysica, 14, 520 (1948).Google Scholar
  8. 6.
    J. de Boer, and R. J. Limbeck, Pkysica, 14, 510 (1948).Google Scholar
  9. 7.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquid, J. Wiley & Sons, New York (1954), p. 692.Google Scholar
  10. 8.
    R. J. Limbeck, Het Principe van Overeenstemmende Tocstanden in de Quantum mechanica, Ph.D. Thesis, Amsterdam (1951).Google Scholar
  11. 9.
    , H. Friedmann, Advances in Chemical Physics, Vol. IV, Interscience Publishers, New York (1962).Google Scholar
  12. 10.
    K. S. Pitzer, J. Chem. Phys., 7, 583 (1939).CrossRefGoogle Scholar
  13. 11.
    E. A. Guggenheim, J. Chem. Phys., 13, 253 (1945).CrossRefGoogle Scholar
  14. 12.
    J. Lennard-Jones, Proc. Roy. Soc, A106, 463 (1924).CrossRefGoogle Scholar
  15. 13.
    E. Helfand, and S. A. Rice, J. Chem. Phys., 32, 1642 (1960).CrossRefGoogle Scholar
  16. 14.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Op. cit., Table I-A, p. 1110.Google Scholar
  17. 15.
    D. M. Lee and H. A. Fairbank, Phys. Rev., 116, 1359 (1959).CrossRefGoogle Scholar
  18. 16.
    R. D. Taylor and J. G. Dash, Phys. Rev., 106, 398 (1957).CrossRefGoogle Scholar
  19. 17.
    C. Grenier, Phys. Rev., 83, 598 (1951).CrossRefGoogle Scholar
  20. 18.
    R. W. Powers, R. W. Mattox, and H. L. Johnston, J. Am. Chem. Soc., 76, 5972 (1954).CrossRefGoogle Scholar
  21. 19.
    J. D. Rogers, K. Zeigler and P. McWilliams, J. Chem. Eng. Data, 7, 179 (1962) Eq. (7) and (10); “Hydrogen Transport Property Correlations Part II,” Los Alamos Sei. Lab., Los Alamos, N. M., Rept. LA-2719 (1962).CrossRefGoogle Scholar
  22. 20.
    R. W. Powers, R. W. Mattox, and H. L. Johnston, J. Am. Chem. Soc., 76, 5968 (1954).CrossRefGoogle Scholar
  23. 21.
    E. Löchtermann, Cryogenics, 3, 44 (1963).CrossRefGoogle Scholar
  24. 22.
    F. Huth, Cryogenics, 2, 368 (1962).CrossRefGoogle Scholar
  25. 23.
    E. Borovik, A. Matveyev, and E. Panina, Zhur. Tekh. Fiz., 10, 988 (1940).Google Scholar
  26. 24.
    F. D. Rossini, et al., Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds, Carnegie Press, Pittsburgh (1953).Google Scholar
  27. 25.
    R. W. Powers, R. W. Mattox, and H. L. Johnston, J. Am. Chem. Soc., 76, 5972 (1954).CrossRefGoogle Scholar
  28. 26.
    N. S. Rudenko, J. Exptl. Theoret. Phys. (U.S.S.R.), 9, 1078 (1939)Google Scholar
  29. 26a.
    N. S. Rudenko and L. V. Shubnikov, Physik. Z. Sowjetunion, 6, 470 (1934).Google Scholar
  30. 27.
    A. van Itterbeek and O. van Paemel, Physica, 8, 133 (1941)CrossRefGoogle Scholar
  31. 27a.
    N. S. Rudenko and L. V. Shubnikov, Physik. Z. Sowjetunion, 6, 470 (1934).Google Scholar
  32. 28.
    V. J. Johnson, (ed.), “A Compendium of the Properties of Materials at Low Temperatures (Phase I), Part I. Properties of Fluids,” NBS Cryogenic Engineering Laboratory, Boulder, Colorado (1960), p. 3009.Google Scholar
  33. 29.
    N. F. Zhdanova, Zhur. Eksptl. i. Teoret, Fiz., 31, 724 (1956)Google Scholar
  34. 29a.
    N. S. Rudenko, J. Techn. Phys. (U.S.S.R.), 18, 1123 (1948).Google Scholar
  35. 30.
    F. London, Superfluids, Vol. II, J. Wiley & Sons, New York (1954).Google Scholar
  36. 31.
    C. A. Schaefer and G. Thodos, A.I.Ch.E. Journal, 5, 367 (1959).CrossRefGoogle Scholar
  37. 32.
    W. J. Brebach and G. Thodos, Ind. Eng. Chem., 50, 1095 (1958).CrossRefGoogle Scholar
  38. 33.
    J. Bigeieisen and E. C. Kerr, J. Chem. Phys., 23, 2442 (1955).CrossRefGoogle Scholar
  39. 34.
    H. H. Tjerkstra, Physica, 18, 853 (1952).CrossRefGoogle Scholar
  40. 35.
    M. H. Edwards and W. C. Woodbury, Phys. Rev., 129, 1911 (1963).CrossRefGoogle Scholar
  41. 36.
    C. A. Schaefer and G. Thodos, Ind. Eng. Chem., 50, 1585 (1958).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1964

Authors and Affiliations

  • J. F. Kerrisk
    • 1
  • J. D. Rogers
    • 1
  • E. F. Hammel
    • 1
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations