Analysis of the Frost Phenomena on a Cryo-Surface

  • R. V. Smith
  • D. K. Edmonds
  • E. G. F. Brentari
  • R. J. Richards
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 9)

Abstract

This paper provides expressions for heat and mass transfer to the frost surface and information regarding the frost formation which can be used by designers of cryogenic systems with uninsulated surfaces, and furthers the general understanding of the frost* phenomena.

Keywords

Heat Transfer Test Section Mass Transfer Rate Cryogenic System Frost Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Richards, D. K. Edmonds, and R. B. Jacobs, “Heat Transfer Between a Cryo-Surface and a Controlled Atmosphere-Experimental Investigation,” Proc. Intl. Inst. of Refrig., Washington, D.C. (1962).Google Scholar
  2. 2.
    J. R. Pingry and R. B. Engdahl, “Surface-Moisture Phenomena under Icing Conditions,” unpublished report, Battelle Memorial Institute, Columbus, Ohio.Google Scholar
  3. 3.
    T. H. McConica, WADC Technical Report 56–338 (1958): Part I, Bibliography of Ice and Frost Control, ASTIA AD-142317; Part II, Annotated List of Patents on Ice and Frost Control, ASTIA AD-142318.Google Scholar
  4. 4.
    J. L. Loper, Trans. ASHRAB J., 66, paper No. 1703 (1960).Google Scholar
  5. 5.
    P. M. Chung and A. B. Algren, “Frost Formation and Heat Transfer on a Cylinder Surface in Humid Air Cross-Flow,” Heating Piping Air Conditioning, (Sept.-Oct. 1958).Google Scholar
  6. 6.
    W. Goodman, “Performance of Coils for Dehumidifying Air.” Heating, Piping Air Conditioning, (Nov. 1938-May 1939).Google Scholar
  7. 7.
    K. O. Beattie, E. B. Finch, and E. H. Schoenborn, “Heat Transfer from Humid Air to Metal under Frosting Conditions,” ASME-Inst. of Mech. Engrs., (Sept. 1951).Google Scholar
  8. 8.
    T. H. Chilton and A. D. Colburn, Ind. Eng. Chem., 26, 1183 (1934).CrossRefGoogle Scholar
  9. 9.
    W. K. Lewis, Trans. Am. Inst. Chem. Engrs., 20, 9 (1927).Google Scholar
  10. 10.
    W. J. Douglas and S. W. Churchill, Chem. Eng. Progr., Symposium Series, 52, 18 (1956).Google Scholar
  11. 11.
    B. G. Van der Hegge Zijnen, Appl. Sci. Res. Sec. A (1956).Google Scholar
  12. 12.
    J. Macinko, Private communication.Google Scholar
  13. 13.
    D. C. Holten, in Advances in Cryogenic Engineering, Vol. 6, Plenum Press, New York (1961), p. 499.Google Scholar
  14. 14.
    S. Kamei, T. Mizushina, S. Kuferi, and T. Koto, Chem. Engr. Japan, 14, 53 (1950).Google Scholar
  15. 15.
    W. D. Coles, “Experimental Determination of Thermal Conductivity of Low Density Ice,” NACA TN 3143 (1954).Google Scholar

Copyright information

© Springer Science+Business Media New York 1964

Authors and Affiliations

  • R. V. Smith
    • 1
  • D. K. Edmonds
    • 1
  • E. G. F. Brentari
    • 1
  • R. J. Richards
    • 1
  1. 1.CEL National Bureau of StandardsBoulderUSA

Personalised recommendations