Liquid Temperature Effects on Thermally Influenced Transition Currents of Nb-Alloy Superconducting Solenoids in He I and He II

  • T. H. K. Frederking
  • C. Linnet
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 13)


In some technical applications of superconductivity dissipative processes cannot be avoided and heat removal is necessary, at least for a limited period of time. The thermal energy often flows through several solid materials and finally has to be transmitted to cryogenic liquid or fluid. At the λ-point, because of the change from He I to superfluid He II, the thermal boundary conductance is affected by the quantum condensation phenomenon. In particular, at the peak heat flux, prior to the onset of film boiling, the thermal conductance is changed distinctly. Therefore, when thermal boundary effects are relatively large in comparison to other impedances, the λ-transition is expected to change the values of thermally limited quenching currents of superconductivity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Easson, P. Hlawiczka, and J M. Ross, Phys. Lett., 20:465 (1966).CrossRefGoogle Scholar
  2. 2.
    W. B. Sampson, M. Strongin, A. Paskin, and G. M. Thompson, Appl. Phys. Lett., 8:191 (1966).CrossRefGoogle Scholar
  3. 3.
    R. E. Hintz and C. Laverick, Proc. Intern. Symposium on Magnet Technology, SLAC, Stanford University, (1965), p. 568.Google Scholar
  4. 4.
    Z. J. J. Stekly, J. Appl Phys., 37:324 (1966).CrossRefGoogle Scholar
  5. 5.
    C. N. Whetstone, G. G. Chase, J. W. Raymond, J B. Vetrano, R. W. Boom, A. G. Prodell, and H. A. Worwetz, IEEE Trans. Magn. MAG-2(3):307 (1966).CrossRefGoogle Scholar
  6. 6.
    E. C. Rogers, Phys. Letters, 22:365 (1966).CrossRefGoogle Scholar
  7. 7.
    T. Frederking, Forschung, 27:17 (1961).Google Scholar
  8. 8.
    G. P. Lemieux and A. C. Leonard, in: Advances in Cryogenic Engineering, Vol, 13, Plenum Press, New York (1968).Google Scholar
  9. 9.
    S. G. Sydoriak and T. R. Roberts, in: Liquid Helium Technology, Bull, Intern, Inst. Refrigeration, Annexe 1966–5, p. 115.Google Scholar
  10. 10.
    J. B. Vetrano and R. W. Boom, J. Appl. Phys., 36:1179 (1965).CrossRefGoogle Scholar
  11. 11.
    J. Sutton and C. Baker, Phys. Letters, 21:601 (1966).CrossRefGoogle Scholar
  12. 12.
    F. W. Reuter, K. M. Rails, and J. Wulff, Trans, Met. Soc. AIME, 236:1143 (1966).Google Scholar
  13. 13.
    Y. Shapira and L. J. Neuringer, Phys. Rev., 140:A1638 (1965).CrossRefGoogle Scholar
  14. 14.
    Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev., 139:A1163 (1965).CrossRefGoogle Scholar
  15. 15.
    R. C. Wolgast, H. P. Hernandez, P. R. Aron, H. C. Hitchcock, and K. A. Solomon, in: Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 601.Google Scholar
  16. 16.
    C. Laverick, Cryogenics, 5:152 (1965).CrossRefGoogle Scholar
  17. 17.
    R. Weyl and I. Dietrich, Cryogenics, 5:9 (1965).CrossRefGoogle Scholar
  18. 18.
    A. El Bindari, R. E Bernert, and L. O. Hoppie, Bull. Am. Phys. Soc., 12:39 (1967).Google Scholar
  19. 19.
    B. W. Clement and T. H. K. Frederking, in: Liquid Helium Technology, Bull. Intern, Inst. Refrigeration, Annexe 1966–5, p. 49.Google Scholar
  20. 20.
    G. Bon Mardion, B. B. Goodman, and A. Lacaze, Cryogenics, 4:26 (1964).CrossRefGoogle Scholar
  21. 21.
    K. G. Gunther and H. Freller, Cryogenics, 7:50 (1967).CrossRefGoogle Scholar
  22. 22.
    J. K. Hulm and R. D. Blaugher, Phys. Rev., 123:1569 (1961).CrossRefGoogle Scholar
  23. 23.
    J. K. Hulm, private communication.Google Scholar
  24. 24.
    R. J. Hesser, M.S. Thesis, University of California, Los Angeles (1966)Google Scholar
  25. 24a.
    R. J. Hesser, Bull, Am, Phys. Soc., Ser. II, 12(3):373 (1967).Google Scholar
  26. 25.
    C. Nanmey, Appl. Phys. Letters, 1:71 (1962).CrossRefGoogle Scholar
  27. 26.
    G. G. Harman and L. H. Gordy, Cryogenics, 7:89 (1967).CrossRefGoogle Scholar
  28. 27.
    C. Nanney, Phys. Rev. Letters, 16:313 (1966).CrossRefGoogle Scholar
  29. 28.
    D. B. Sullivan and C. E. Roos, Phys, Rev, Letters, 18:212 (1967).CrossRefGoogle Scholar
  30. 29.
    M. N. Wilson, in: Liquid Helium Technology, Bull. Intern. Inst. Refrigeration, Annexe 1966–5, p. 109.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • T. H. K. Frederking
    • 1
  • C. Linnet
    • 1
  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations