Advertisement

Nucleate Cooling Stability for Superconductor-Normal Metal Composite Conductors in Liquid Helium

  • C. N. Whetstone
  • R. W. Boom
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 13)

Abstract

The technology of stable superconducting magnets has become synonymous with the study and use of composite conductors, The composite conductor, a superconductor paralleled with a normal metal, helps provide magnet stability by supplying alternate electrical and thermal paths for the superconductor when the superconductor becomes normal [1,2]. If these alternate paths of normal metal can carry the full transport current continuously and still remain below the superconductor transition temperature, the conductor is said to be totally stable. This is an operational definition of total stability in that sufficient cooling to dissipate long-term Joule heating is required. Partial stability can be thought of as the successful operation of a conductor with transport currents higher than the totally stable current. For these higher currents some degree of risk is involved, in that occasional uncontrolled normal transitions are possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Laverick, Bull. Amer. Phys. Soc., 9:558 (1964)Google Scholar
  2. 1a.
    A. R. Kantrowitz and Z. J. J. Stekly, Appl. Phys. Letters. 6:56 (1965); D. N. Cornish. “Superconducting Coils Using Stranded Cables,” U.K. Atomic Energy Authority Preprint No. CLM-P83CrossRefGoogle Scholar
  3. 1b.
    Z. J. J. Stekly and J. L. Zar, IEEE Trans, on Nuclear Science. NS-12:367 (1965)CrossRefGoogle Scholar
  4. 1c.
    Z. J. J. Stekly, IEEE Trans, on Magnetics, Mag-2:319 (1966)CrossRefGoogle Scholar
  5. 1d.
    E. D. Hoag, IEEE Trans, on Magnetics, Mag-2:315 (1966).CrossRefGoogle Scholar
  6. 2.
    T. N. Fields and C. Laverick, IEEE Trans, on Nuclear Science, NS-12:362 (1965)CrossRefGoogle Scholar
  7. 2a.
    C. Laverick, in: Proc. Internat’l. Magnet Symp., Stanford University, Palo Alto, Calif., Conf. 650922, TID-4500, 44th Ed. (Federal Clearinghouse Department of Commerce) (1965), p. 560Google Scholar
  8. 2b.
    C. Laverick and G. Lobell, Rev. Sci. Instr., 36:825 (1965)CrossRefGoogle Scholar
  9. 2c.
    Z. J. J. Stekly, J. Appl Phys. 37:324 (1966); C. Laverick, in: Superconducting Magnet Systems, Symposium on Engineering Problems of Controlled Thermonuclear Research (Oct. 1966) to be published as an AEC Conference Publication.CrossRefGoogle Scholar
  10. 3.
    C. N. Whetstone, G. G. Chase, J. W. Raymond, J. B. Vetrano, R. W. Boom, A. G. Prodell, and H. A. Worwetz, IEEE Trans, on Magnetics, Mag-2:307 (1966).CrossRefGoogle Scholar
  11. 4.
    E. G. Brentari and R. V. Smith, in: International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 325Google Scholar
  12. 4a.
    R. J. Richards, W. G. Steward, and R. B. Jacobs, NBS Tech. Note No. 122 (1961).Google Scholar
  13. 5.
    R. D. Cummings, Sc. D. Dissertation, Massachusetts Institute of Technology (1965).Google Scholar
  14. 6.
    Z. J. J. Stekly, in: Proc. Internat’l. Magnet Symp,, Stanford University, Palo Alto, Calif., Conf, 650922, TID-4500, 44th Ed. (Federal Clearinghouse, Dept. of Commerce) (1965), p. 550.Google Scholar
  15. 7.
    J. P. Clement and E. H. Quinnell, Rev. Sci. Instr., 23:213 (1952).CrossRefGoogle Scholar
  16. 8.
    A. D. McInturff, Atomics International, private communication.Google Scholar
  17. 9.
    G. T. Mulholland, A. G. Prodell, and H. A. Worwetz, Brookhaven, National Laboratory, private communication.Google Scholar
  18. 10.
    H. Brechna and W. Haldemann, Stanford Linear Accelerator, private communication.Google Scholar
  19. 11.
    M. N. Wilson, in: Liquid Helium Technology, Bull. Intern. Inst. Refrigeration, Annexe 1966–5, p. 109.Google Scholar
  20. 12.
    E, Hoag, “Experimental Investigation of Advanced Superconducting Magnets,” Annual Rept., No, NAS 8–5279, Avco Everett Research Laboratories, Everett, Mass.Google Scholar
  21. 13.
    B. W. Clement and T. H. K. Frederking, in: Liquid Helium Technology, Bull. Intern. Inst. Refrigeration, Annexe 1966–5, p. 49.Google Scholar
  22. 14.
    D. N. Lyon, in: Conference on Boiling and Two-Phase Flow, University of California, Berkeley, Calif. (May 1965), p. 264.Google Scholar
  23. 15.
    J. de Launay, R. L. Dolecek, and R. T. Webber, J. Phys. Chem, Solids, 11:37 (1959).CrossRefGoogle Scholar
  24. 16.
    J. L. Olsen and L. Rinderer, Nature, 173:682 (1954)CrossRefGoogle Scholar
  25. 16a.
    P. S. L. Hsu and J. E. Kunzler, Rev. Sci. Instr., 34:297 (1963)CrossRefGoogle Scholar
  26. 16b.
    J. M. Brooks and J. R. Purcell, in: Liquid Helium Technology, Bull, Intern. Inst. Refrigeration, Annexe 1966–5, p. 521.Google Scholar
  27. 17.
    L. L. Lowe, Atomics International, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • C. N. Whetstone
    • 1
  • R. W. Boom
    • 1
  1. 1.Atomics InternationalCanoga ParkUSA

Personalised recommendations