Advertisement

Rate Model for Ortho-Parahydrogen Reaction on a Highly Active Catalyst

  • A. H. Singleton
  • A. Lapin
  • L. A. Wenzel
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 13)

Abstract

Measurements were made of the low-temperature ortho-parahydrogen reaction rate obtained with an extremely active nickel oxide silica gel ‘catalyst, The rate of the ortho-parahydrogen reaction on this catalyst is higher than the rate of any known heterogeneous catalytic reaction that has been studied from the standpoint of mass and energy transport limitations to the reaction rate. Table I lists the magnitude of some typical chemical reaction rates for heterogeneous catalytic reactions, including the magnitude of the ortho-parahydrogen conversion rate for the catalyst used in this study.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. G. Harrison and C. A. McDowell, Proc. Roy. Soc. (London), A220:77 (1953).CrossRefGoogle Scholar
  2. 2.
    L. G. Harrison and C. A. McDowell, Proc. Roy, Soc, (London), A228:66 (1955).CrossRefGoogle Scholar
  3. 3.
    D. H. Weitzel, J. H. Blake, and M. Konecnik, in: Advances in Cryogenic Engineering, Vol. 4, Plenum Press, New York (1960), p. 286.Google Scholar
  4. 4.
    R. N. Keeler, D. H. Weitzel, J. H. Blake, and M. Konecnik, in: Advances in Cryogenic Engineering, Vol. 5, Plenum Press, New York (1960), p. 511.Google Scholar
  5. 5.
    N. Wakao, J. M. Smith, and P. W. Selwood, J. Catalysis, 1(1):62 (1962).CrossRefGoogle Scholar
  6. 6.
    G. E. Schmauch and A. H. Singleton, Ind. Eng. Chem. 56(5):20 (1964).CrossRefGoogle Scholar
  7. 7.
    G. E. Schmauch, J. F. Kucirka, and R. G. Clark, Chem. Eng. Progr., 59(8):55 (1963).Google Scholar
  8. 8.
    E. G. Brentari, P. J. Giarratano, and R. V. Smith, NBS Tech. Note No. 317 (Sept. 20, 1965).Google Scholar
  9. 9.
    W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill Book Company, New York (1954), p. 72.Google Scholar
  10. 10.
    M. Leva, Ind. Eng. Chem., 39:857 (1947).CrossRefGoogle Scholar
  11. 11.
    M. Leva and M. Grammer, Ind. Eng. Chem., 40: 415 (1948).CrossRefGoogle Scholar
  12. 12.
    M. Leva, M. Weintraub, M. Gmmmer, and E. L. Clark, Ind. Eng. Chem., 40:747 (1948).CrossRefGoogle Scholar
  13. 13.
    G. A. Hougen, B. Gamson, and G. Thodos, Trans. A.I.Ch.E., 39:1 (1943).Google Scholar
  14. 14.
    O. A. Hougen and C. R. Wilke, Trans. A.I.Ch.R., 41:445 (1945).Google Scholar
  15. 15.
    E. W. Thiele, Ind. Eng. Chem., 31:916 (1939).CrossRefGoogle Scholar
  16. 16.
    N. Wakao and J. M. Smith, Ind. Eng. Chem. Fund., 3:123 (1964).CrossRefGoogle Scholar
  17. 17.
    A. H. Singleton, J. F. Kucirka, and A. Lapin, in: “Investigation of the Para-Ortho Shift of Hydrogen”, U.S. Air Force Tech. Rept. AFAPL-TR-66–111 (Sept. 1966).Google Scholar
  18. 18.
    A. H. Singleton, Ph.D. Dissertation, Lehigh University, Bethlehem, Pennsylvania (1967).Google Scholar
  19. 19.
    E. G. Biski, J. F. Kucirka, and G. E. Schmauch, “Investigation of the Para-Ortho Shift of Hydrogen”, ASD-TR-64–48 (Mar. 1964).Google Scholar
  20. 20.
    A. von Antropoff, Kolloid Zeitschrift, 98:249 (1952).CrossRefGoogle Scholar
  21. 21.
    A. J. Kidnay and M. J. Hiza, in: Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York (1967), p. 730.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. H. Singleton
    • 1
  • A. Lapin
    • 1
  • L. A. Wenzel
    • 1
    • 2
  1. 1.Air Products and Chemicals, Inc.AllentownUSA
  2. 2.Lehigh UniversityBethlehemUSA

Personalised recommendations