Advertisement

The Adsorption Isotherms of Methane, Nitrogen, Hydrogen and their Mixtures on Charcoal at 76°K

  • A. J. Kidnay
  • M. J. Hiza
  • P. F. Dickson
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 13)

Abstract

Cryogenic purification systems are an integral part of most helium or hydrogen refrigerators and liquefiers. Although these purification systems utilize many different processes and are tailor-made for the particular operating conditions and feed gas, they generally have one feature in common: the use of a packed bed of adsorbent to remove the final trace quantities of impurity. In spite of the obvious importance of these cryogenic adsorbers, little information is available regarding the equilibrium capacity of an adsorbent for an impurity carried in a hydrogen or helium gas stream. The work reported here is part of a continuing experimental program[1–6] designed to provide engineers with the equilibrium data necessary for the proper design of cryogenic adsorbers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Kidnay and M. J. Hiza, in: Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York (1967), p. 730.Google Scholar
  2. 2.
    A. J. Kidnay and A. L. Myers, A.I.Ch.E. J., 12:981 (1966).CrossRefGoogle Scholar
  3. 3.
    A. J. Kidnay and M. J. Hiza, A.I.Ch..E. J., 12:58 (1966).CrossRefGoogle Scholar
  4. 4.
    A. J. Kidnay and M. J. Hiza, J. Phys. Chem., 67:1725 (1963).CrossRefGoogle Scholar
  5. 5.
    M. J. Hiza and A. J. Kidnay, in: Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 174.Google Scholar
  6. 6.
    M. J. Hiza and A. J. Kidnay, in: Advances in Cryogenic Engineerings Vol. 6, Plenum Press, New York (1961), p. 457.Google Scholar
  7. 7.
    A. S. Coolidge, J. Am. Chew. Soc., 56:554 (1934).CrossRefGoogle Scholar
  8. 8.
    D. M. Young and A. D. Crowell, Physical Adsorption of Gases, Butterworths, London (1962).Google Scholar
  9. 9.
    J. M. Prausnitz, A.I.Ck.E. J., 5:3 (1959).CrossRefGoogle Scholar
  10. 10.
    R. D. Goodwin, D. E. Diller, H. M. Roder, and L. A. Weber, NBS J. Res., 67A:173 (1963).CrossRefGoogle Scholar
  11. 11.
    M. J. Hiza and R. N. Herring, in: International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 182.Google Scholar
  12. 12.
    J. M. Prausnitz and A. L. Myers, A.I.Ch..E. J. 9:5 (1963).CrossRefGoogle Scholar
  13. 13.
    A. L. Myers and J. M. Prausnitz, A.I.Ch.E. J. 11:121 (1965).CrossRefGoogle Scholar
  14. 14.
    M. J. Hiza, Chem. Eng. Progr., 56:68 (1960).Google Scholar
  15. 15.
    Z. Dokoupil, G. Van Soest, and M. D. P. Swenker, Appl. Sci. Res., A5:182 (1955).Google Scholar
  16. 16.
    R. J. Grant and M. Manes, Ind. Eng, Chem., 3:221 (1964).Google Scholar
  17. 17.
    R. M. Barrer, Brit. Chem. Eng., 4:267 (1959).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. J. Kidnay
    • 1
  • M. J. Hiza
    • 1
  • P. F. Dickson
    • 1
  1. 1.Cryogenics DivisionNBS Institute for Materials ResearchBoulderUSA

Personalised recommendations