Advertisement

Critical Surfaces for Commercial Nb3Sn Ribbon and Nb-25%Zr Wire

  • P. R. Aron
  • G. W. Ahlgren
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 13)

Abstract

Superconductors with properties that make their application to magnet construction attractive are now a commercial reality, The problems of stability and predictability that plagued the superconducting magnet designer now appear to be solvable [1,2]. Magnets of certain types and sizes can now be designed with a high degree of confidence that the finished product will perform as predicted from the tabulated characteristics of the superconductor. The magnet design problem is usually stated in terms of the magnetic field intensity and geometry, cost, operating temperatures, and for some special applications (e.g., the space program), weight. The three prime variables which define the usefulness of a superconductor are temperature T, magnetic field H, and current I. A surface in this space HIT defines the boundary between resistive and nonresistive (superconducting) behavior. The optimum solution to the magnet system design problem will lie on this surface for a material chosen with regard to the other variables of cost, strength, weight, etc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Kantrowitz and Z. J. J. Stekly, Appl Phys, Letters, 6:56 (1965).CrossRefGoogle Scholar
  2. 2.
    J. E. C. Williams, Phys. Letters, 19:96 (1965).CrossRefGoogle Scholar
  3. 3.
    W. B. Sampson, M. Strongin, A. Paskin, and G. M. Thompson, Appl Phys. Letters, 8:191 (1966).CrossRefGoogle Scholar
  4. 4.
    G. D. Cody, H. S. Berman, G. W. Cullen, R. E. Enstrom, J. J. Hanak, R. Hecht, and R. L. Novak, “Phenomenon of Superconductivity,” Radio Corporation of America, AFML-TR-65–169, AB-465438 (June 1965).Google Scholar
  5. 5.
    T. C. Berlincourt, R. R. Hake, and D. H. Leslie, Phys, Rev, Letters, 6:671 (1961).CrossRefGoogle Scholar
  6. 6.
    P. R. Aron and H. C. Hitchcock, J. Appl. Phys., 33:2242 (1962).CrossRefGoogle Scholar
  7. 7.
    R. D. Cummings and W. N. Latham, J. Appl Phys., 36:2971 (1965).CrossRefGoogle Scholar
  8. 8.
    J. J. Hanak, K. Strater, and G. W. Cullen, RCA Review, 25:342 (1964).Google Scholar
  9. 9.
    D. B. Montgomery and W. Sampson, Appl Phys, Letters, 6:108 (1965).CrossRefGoogle Scholar
  10. 10.
    J. R. Clement and E. H. Quinnell, Phys. Rev., 79:1028 (1950).CrossRefGoogle Scholar
  11. 11.
    Y. B. Kim, C. P. Hempstead, and A. R. Strnad, Phys. Rev., 129:528 (1963).CrossRefGoogle Scholar
  12. 12.
    P. W. Anderson, Phys. Rev. Letters, 9:309 (1962).CrossRefGoogle Scholar
  13. 13.
    D. A. Gandolfo and C. M. Harper, “Study of Properties of High-Field Superconductors at Elevated Temperatures,” Radio Corporation of America, NASA CR-80154 (Oct, 1966).Google Scholar
  14. 14.
    A. El Bindari and M. M. Litvak, Rev. Mod. Phys., 36:98 (1964).CrossRefGoogle Scholar
  15. 15.
    W. A. Fietz, M. R. Beasley, J. Silcox, and W. W. Webb, Phys. Rev., 136A:335 (1964).CrossRefGoogle Scholar
  16. 16.
    B. W. Roberts, in: Progress in Cryogenics, Vol 4, Academic Press» New York (1964), p. 159.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • P. R. Aron
    • 1
  • G. W. Ahlgren
    • 1
  1. 1.NASA Lewis Research CenterClevelandUSA

Personalised recommendations