Advertisement

Tensile Properties of Neoprene below the Glass Transition Temperature

  • R. F. Robbins
  • R. P. Reed
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 13)

Abstract

Elastomeric materials exhibit large extension and forcible quick retraction over a rather limited temperature range known as the rubbery plateau region [1]. At temperatures below this, they behave like glasses, and the transition from a rubbery to a glassy material takes place within a narrow temperature range, which can normally be described by a single transition temperature T g . Above T g , the mechanical properties can best be described using dynamic tests which measure creep, stress relaxation, damping, or stress-strain parameters. The latter are usually obtained by varying stress or strain sinusoidally from frequencies of 0.1 Hz to at least 104Hz. Due to the dependence of the mechanical properties on frequency, it is often necessary to cover this entire range, either by direct measurement or by applying the time-temperature superposition principle [2].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Tobolsky, Properties and Structure of Polymers, John Wiley & Sons, New York (1960).Google Scholar
  2. 2.
    J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley & Sons, New York (1961).Google Scholar
  3. 3.
    T. L. Smith, “Rupture of Elastomers,” in: Rheology, Vol. IV, F. R. Eirich, ed., Academic Press, New York (1967).Google Scholar
  4. 4.
    T. L. Smith and J. E. Frederick, J. Appl. Phys., 36(10):2996 (1965).CrossRefGoogle Scholar
  5. 5.
    I. Wolock, J. A. Kies, and S. B. Newman, Fracture, John Wiley & Sons, New York (1959), p. 250.Google Scholar
  6. 6.
    A. M. Bueche and J, P. Berry, Fracture, John Wiley & Sons, New York (1959), p. 265.Google Scholar
  7. 7.
    B. Golding, Polymers and Resins, D. Van Nostrand Co., Inc., New York (1959), p. 477.Google Scholar
  8. 8.
    R. F. Robbins, Y. Ohori, and D. H. Weitzel, in: Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 287.Google Scholar
  9. 9.
    D. H. Weitzel, R. F. Robbins, G. R. Bopp, and W. R. Bjorklund, in: Advances in Cryogenic Engineering, Vol. 6, Plenum Press, New York (1961), p. 219.Google Scholar
  10. 10.
    R. P. Reed, in: Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1961), p. 488.Google Scholar
  11. 11.
    K. A. Warren and R. P. Reed, NBS Monograph 63 (1963).Google Scholar
  12. 12.
    R. E. Robertson, J. Chem. Phys., 44(10):3950 (1966).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • R. F. Robbins
    • 1
  • R. P. Reed
    • 1
  1. 1.Cryogenics DivisionNBS Institute for Materials ResearchBoulderUSA

Personalised recommendations