Advertisement

Model for Thermally Sustained Pressure Oscillations Associated with Liquid Helium

  • P. Thullen
  • J. L. SmithJr.
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 13)

Abstract

In the operation of systems associated with liquid helium, many workers have observed thermally sustained pressure oscillations [2,4,5,7,8,11,16,17]. These oscillations cause pressure fluctuations and a vastly increased heat leak to the low-temperature region. The geometry of such systems is generally as illustrated in Fig. 1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chu Boa-Teh, Physics of Fluids U.S.A., 6(11):1638 (1963).CrossRefGoogle Scholar
  2. 2.
    J. R. Clement and J. Gaffney, in: Advances in Cryogenic Engineering, Vol. 1, Plenum Press, New York (1960), p. 227.Google Scholar
  3. 3.
    D. A. Ditmars and G. T. Furukawa, NBS J, Res. 69C(1):35 (1964).Google Scholar
  4. 4.
    M. H. Edwards and W. C. Woodbury, Canadian J. Phys., 38(3):335 (1960).CrossRefGoogle Scholar
  5. 5.
    A. P. M. Glassford, Ph. D. Dissertation, Massachusetts Institute of Technology, Cambridge, Mass, (1965).Google Scholar
  6. 6.
    E. H. Griffiths, Thermal Measurement of Energy, Cambridge University Press (1901), p. 50.Google Scholar
  7. 7.
    R. W. Hill and O. V. Lounasmaa, Phil. Trans. Roy. Soc., 252:357 (1960).CrossRefGoogle Scholar
  8. 8.
    W. H. Keesom, Helium, Elsevier, Amsterdam (1942), pp. 97 and 174.Google Scholar
  9. 9.
    H. A. Kramers, Physica, 15:971 (1949).CrossRefGoogle Scholar
  10. 10.
    J. Landau, B.S. Thesis, Massachusetts Institute of Technology, Cambridge, Mass, (1964).Google Scholar
  11. 11.
    O. V. Lounasmaa, Ann. Univ. Turku, A1:39 (1959).Google Scholar
  12. 12.
    E. A. Milne, Quart. J. Appl. Math., 4:258 (1933).Google Scholar
  13. 13.
    J. W. S. Rayleigh, The Theory of Sound, Vol. II, Dover Publications, New York (1896), p. 226.Google Scholar
  14. 14.
    R. B. Scott, Cryogenic Engineering, D, Van Nostrand, Englewood Cliffs, N.J. (1959), p. 118.Google Scholar
  15. 15.
    C. F. Squire, Low Temperature Physics, McGraw-Hill Book Company, Inc., New York (1953), p. 23.Google Scholar
  16. 16.
    E. W. Takonis, J. J. M. Beenakker, A. O. C. Nier, and L. T. Aldrich, Phvsica, 15:733 (1949).Google Scholar
  17. 17.
    A. Wexler, J. Appl. Phys., 22:1463 (1951).CrossRefGoogle Scholar
  18. 18.
    J. D. Bannister, Air Reduction Company Film, private communication.Google Scholar
  19. 19.
    F. E. Hoare, L. C. Jackson, and N. Kürti, Experimental Cryophysics, Butterworths, London (1961), p. 155.Google Scholar
  20. 20.
    J. D. Bannister, in: Liquid Helium Technology, Bull. Intern. Inst. Refrigeration, Annexe 1966–5, p. 127.Google Scholar
  21. 21.
    J. D. Bannister, Air Reduction Company, private communication (1967).Google Scholar
  22. 22.
    P. Thullen, M.S. Thesis, Massachusetts Institute of Technology, Cambridge, Mass. (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • P. Thullen
    • 1
  • J. L. SmithJr.
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations