Microscopic and Ultramicroscopic Methods of Identifying and Quantitating Cells in Diffuse Fibrous Arterial Thickenings and Atheromatous Plaque

  • G. R. Campbell
  • J. H. Campbell
Part of the Nato ASI Series book series (NSSA, volume 219)


Identification of the cellular components of atheroma and their distribution within lesions can provide important information concerning pathogenesis of the disease. However, to understand how and why the disease develops, these observations cannot be limited to a single time frame but must be extended over the complete period of development, with particular emphasis on changes in childhood and early adults such as in the PDAY studies described by Professor Robert Wissler (this volume).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. W. & O. B. Bayliss, 1976. Detection of macrophages in atherosclerotic lesions with cytochrome oxidase. Brit. J. Exp. Pälhfil. 57:30–36.Google Scholar
  2. Altschul, R. 1950. Selected studies on Arteriosclerosis. Charles C. Thomas, Springfield.Google Scholar
  3. Ang, A.H., G. Tachas, J.H. Campbell, J.F. Bateman & G.R. Campbell. 1990. Collagen synthesis by cultured rabbit aortic smooth muscle cells: alteration with phenotype. Biochem. J. 265:461469.CrossRefGoogle Scholar
  4. Aqel, N. M., R. Y. Ball, H. Waldmann, & M. J. Mitchinson, 1985. Identification of macrophages and smooth muscle cells in human atherosclerosis using monoclonal antibodies. J. Pathol. 146:197–204.PubMedCrossRefGoogle Scholar
  5. Babaev, V. R., A. S. Antonov, O. S. Zacharova, Y. A. Romanov, A. V. Krushinsky, V. P. Tsibulsky, V.P. Shirinsky, V. S. Repin & V.N. Smirnov. 1988. Identification of intimal subendothelial cells from human aorta in primary culture. Atherosclerosis 71:45–56.PubMedCrossRefGoogle Scholar
  6. Barrett, T. B. & E. P. Benditt. 1988. Platelet-derived growth factor gene expression in human atherosclerotic plaques and normal artery wall. Proc, Natl, Acad, Sci, USA 85:2810–2814.CrossRefGoogle Scholar
  7. Becker, C. G. & G. E. Murphy. 1969. Demonstration of contractile protein in endothelium and cells of heart valves, endocardium, intima, arteriosclerotic plaques, and Aschoff bodies of rheumatic heart disease. Ainer, J, Pathol. 55:1–37.Google Scholar
  8. Beckers-Bleukx, G. & G. Maréchal. 1985. Detection and distribution of myosin isozymes in vertebrate smooth muscle. Eur. J. Biochem. 152:207–211.PubMedCrossRefGoogle Scholar
  9. Belkin, A. M., O.I. Ornatsky, A. E. Kabakov, M. A. Glukhova & V. E. Koteliansky. 1988. Diversity of Vinculin/meta-Vinculin in human tissues and cultivated cells. Expression of muscle specific variants of vinculin in human aorta smooth muscle cells. J. Biol. QhsSL. 263:6631–6635.Google Scholar
  10. Benzonana, G., O. Skalli, & G. Gabbiani. 1988. Correlation between the distribution of smooth muscle or non-muscle myosins and a-smooth muscle actin in normal and pathological soft tissues. Cell Motil. Cytoskeleton. 11:260–274.PubMedCrossRefGoogle Scholar
  11. Birinyi, L. K., S. J. C. Warner, R. N. Salomon, A. D. Callow & P. Libby. 1989. Observations on human smooth muscle cell cultures from hyperplastic lesions of prosthetic bypass grafts - Production of platelet-derived growth factor like mitogen and expression of a gene for a platelet-derived growth factor receptor - A preliminary study. J, Vase, Surg. 10:157–165.Google Scholar
  12. Campbell G. R. & J. H. Campbell. 1987. Smooth muscle cells. In: “Atherosclerosis: Biology and Clinical Science.” A.G. Olsson. ed: 105–115. Churchill Livingstone Inc., New York.Google Scholar
  13. Campbell, J. H., M. F. Reardon, G. R. Campbell & P. J. Nestel. 1985. Metabolism of atherogenic lipoproteins by smooth muscle cells of different phenotype in culture. Arteriosclerosis. 5:318–328.PubMedCrossRefGoogle Scholar
  14. Campbell, J. H., O. Kocher, O. Skalli, G. Gabbiani & G. R. Campbell. 1989. Cytodifferentiation and expression of alpha-smooth muscle actin mRNA and protein during primary culture of aortic smooth muscle cells. Correlation with cell density and proliferative state. Arteriosclerosis. 9:633–643.PubMedCrossRefGoogle Scholar
  15. Chamley, J. H., G. R. Campbell, J. D. McConnell & U. Gröschel-Stewart. 1977. Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell Tiss. Res. 177:503–522.Google Scholar
  16. Chamley-Campbell, J. H., G. R. Campbell and R. Ross, 1979. The smooth muscle cell in culture. Physiol. Rev. 59:1–61.PubMedCrossRefGoogle Scholar
  17. Chazov, E. I., V.S. Repin, A. N. Orekhov, A. S. Antonov, S. N. Preobrazhensky, E. L. Soboleva & V. N. Smirnov. 1986.Google Scholar
  18. Cookson, F. B. (1971) The origin of foam cells in atherosclerosis. Brit. J. Exp. Pathol. 52:62–69.Google Scholar
  19. DaviS/ H. R., D. Vesselinovitch, & R. W. Wissler, 1984. Histochemical detection and quantification of macrophages in rhesus and cynomolgus monkey atherosclerotic lesions. J. Histochem. Cytochem. 32:1319–1327.CrossRefGoogle Scholar
  20. Debus, E., K. Weber, & M. Osborn, 1983. Monoclonal antibodies to desmin, the muscle-specific intermediate filament protein. EMBO J. 2:2305–2312.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Eddinger, T. J. & R. A. Murphy. 1988. Two smooth muscle myosin heavy chains differ in their light meromyosin fragment. Biochem. 27:3807–3811.CrossRefGoogle Scholar
  22. Emeson, E. E. & A. L. Robertson,. 1988. T lymphocytes in aortic and coronary intimas. Their potential role in atherogenesis. Amer. J. Pathol. 130:369–376.Google Scholar
  23. Evans, R. R., R. M. Robson & M. H. Stromer. 1984. Properties of smooth muscle vinculin. J. Biol. Chem. 259:3916–3924.PubMedGoogle Scholar
  24. Finan, P. J., R. M. Grant, C. De Mattos, F. Takei, P. J. Berry, E. S. Lennox, N. M. Blechan, 1982. Immunohistochemical techniques in the early screening of monoclonal antibodies to human colonic epithelium. Brit. J. Cancer 46:9–17.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fowler, S., P. A. Berberian, S. Goldfischer & H. Wolinksy. 1980. Characterization of cell populations isolated from aortas of rhesus monkeys with experimental atherosclerosis. Circ. Res. 46:520–530.PubMedCrossRefGoogle Scholar
  26. Fowler, S., H. Shio, & N.J. Haley. 1979. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits: IV Investigation of macrophage-like properties of aortic cell populations. Lab. Invest. 41:372–378.PubMedGoogle Scholar
  27. Fritz, K. E., Daoud, A. S., & J. Jarmolych. 1980. Non-specific esterase activity during regression of swine aortic atherosclerosis. Artery. 7:352–366.PubMedGoogle Scholar
  28. Fürst, D. O., R. A. Cross, J. DeMay and J. V. Small. 1986. Caldesmon is an elongated, flexible molecule localized in the actomyosin domain of smooth muscle. EMBO J. 5:251–257.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gabbiani, G., O. Kocher, W. S. Bloom, J. Vandekerckhove & K. Weber. 1984. Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque and cultured rat aortic media. J, Clin, Invest. 73:148–152.CrossRefGoogle Scholar
  30. Gaton, E. & M. Wolman. 1977. The role of smooth muscle cells and hematogenous macrophages in atheroma. J. Pathol. 123:123–128.PubMedCrossRefGoogle Scholar
  31. Gaylinn, B.D., T.J. Eddinger, P.A. Martino, P.L. Monical, D.F. Hunt, & R.A. Murphy. 1989. Expression of nonmuscle myosin heavy and light chains in smooth muscle. Amer. J. Physiol. 257:C997-C1004.PubMedCrossRefGoogle Scholar
  32. Geer, J. C. 1965. Fine structure of human aortic intimal thickening and fatty streaks Lab. Invest. 14:1764–1783.PubMedPubMedCentralGoogle Scholar
  33. Geer, J. C. & Haust, M. D. 1972. Smooth muscle cells in atherosclerosis: In Monographs on Atherosclerosis Vol. 2. Ed. Pollack, O. J., Simms, H. S. & Kirk, S. E., Basel, S. Karger A.G.Google Scholar
  34. Geiger, B. 1979. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18:193–205.PubMedCrossRefGoogle Scholar
  35. Gerrity, R. G. 1981. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Amer. J. Pathol. 103:181–190.Google Scholar
  36. Ghidoni, J. J. & R. M. O’Neal. 1967. Recent advances in molecular pathology: A review: Ultrastructure of human atheroma. Exp. Mol. PathQl. 7:378–406.CrossRefGoogle Scholar
  37. Glukhova, M. A., M. G. Frid, B. V. Shekhonin, T. D. Vasilevskaya, J. Grünwald, M. Saginati & V. E. Koteliansky. 1989. Expression of extra domain A fibronectin sequence in vascular smooth muscle cells is phenotype dependent. J. Cell Biol. 109:357–366.PubMedCrossRefGoogle Scholar
  38. Glukhova, M. A., A. E. Kabakov, A. M. Belkin, M. G. Frid, O. I. Ornatsky, N. I. Zhidkova & V.E. Koteliansky. 1986. Meta-vinculin distribution in adult human tissues and cultured cells. FEBS Lett. 207:139–141.PubMedCrossRefGoogle Scholar
  39. Glukhova, M. A., A. E. Kabakov, M. G. Frid, O. I. Ornatsky, A. M. Helkin, D. N. Mukhin, A. N. Orekhov, V. E. Koteliansky & V. N. Smirnov. 1988. Modulation of human aorta smooth muscle cell phenotype: A study of muscle-specific variants of vinculin, caldesmon, and actin expression. Proc. Natl, Acad. Sci. USA, 85:9542–9546.CrossRefGoogle Scholar
  40. Glukhova, M. A., A. E. Kabakov, O. I. Ornatsky, M. G. Frid, & V. N. Smirnov. 1985. Monoclonal antibodies that distinguish between human aorta smooth muscle and endothelial cells. FEBS Lett. 189:291–295.PubMedCrossRefGoogle Scholar
  41. Glukhova, M. A., A. E. Kabakov, O. I. Ornatsky, T. D. Vasilevskaya, V. E. Koteliansky & V. N. Smirnov. 1987. Immunoreactive forms of caldesmon in cultivated human vascular smooth muscle cells. FEBS Lett. 218:292–294.PubMedCrossRefGoogle Scholar
  42. Glukhova, M. A., O. I. Ornatsky, M. G. Frid, A. E. Kabakov, R. R. Adany, L. Muszbek, & V. N. Smirnov. 1987. Identification of smooth muscle-derived foam cells in the atherosclerotic plaque of human aorta with monoclonal antibody IIGIO. Tissue and Cell 19:657–663.PubMedCrossRefGoogle Scholar
  43. Gown, A. M., T. Tsukada & R. Ross. 1986. Human atherosclerosis. II. Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions. Amer. J. Pathol. 125:191–207.Google Scholar
  44. Gown, A. M., A. M. Vogel, D. Gordon, & P. L. Lu. 1985. A smooth muscle-specific antibody recognizes smooth muscle actin isozymes. J. Cell Biol. 100:807–813.PubMedCrossRefGoogle Scholar
  45. Gröschel-Stewart, U., J. H. Chamley, J. D. McConnell & G. Burnstock. 1975. Comparison of the reaction of cultured smooth and cardiac muscle cells and fibroblasts to specific antibodies to myosin. Histochem. 43:215–224.CrossRefGoogle Scholar
  46. Hansson, G. K., L. Jonasson, J. Holm & L. Claesson-Welsh. 1986. Class II MHC antigen expression in the atherosclerotic plaque: smooth muscle cells express HLA-DR, HLA-DQ and the invariant gamma chain. Clin. Exp. Immunol. 64:261–2 68.PubMedPubMedCentralGoogle Scholar
  47. Hansson, G. K., L. Jonasson, J. Holm, M. M. Clowes & A. W. Clowes. 1988. Y-Interferon regulates vascular smooth muscle proliferation and la antigen expression in vitro and in vivo. Circ. Res. 63:712–719.PubMedCrossRefGoogle Scholar
  48. Hansson, G. K., L. Jonasson, B. Lojsthed, S. Stemme, O. Kocher, & G. Gabbiani. 1988. Localization of T lymphocytes and macrophages in fibrous and complicated human atherosclerotic plaques. Atherosclerosis. 72:135–141.PubMedCrossRefGoogle Scholar
  49. Haust, M. D. 1983. Atherosclerotic lesions and sequelae. In: Cardiovascular Pathology, Silver, M. D. ed. New York, Churchill Livingstone, pp. 191–315.Google Scholar
  50. Haust, M. D. and More, R. H. 1963. Significance of the smooth muscle cell in atherogenesis. In: Evolution of the atherosclerotic Plaque. Jones, R. J. ed., Chicago, University of Chicago Press, pp. 51–64.Google Scholar
  51. Herman, B., M. W. Roe, C. Harris, B. Wray & D. Clemmons. 1987. growth factor-induced alterations in vinculin distribution in porcine vascular smooth muscle cells. Cell Motil. Cytoskel. 8:91–105.CrossRefGoogle Scholar
  52. Hynes, R. O. 1985. Molecular biology of fibronectin. Annu. Rev. Cell hinl 1:67–90.CrossRefGoogle Scholar
  53. Ikebe, M. & S. Reardon. 1988. Binding of caldesmon to smooth muscle myosin. J. Biol. Chem. 263:3055–3058.PubMedGoogle Scholar
  54. Jonasson, L., J. Holm, O. Skalli, G. Bondjers, & G. K. Hansson. 1986. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6:131–138.PubMedCrossRefGoogle Scholar
  55. Jonasson, L., J. Holm, O. Skalli, G. Gabbiani & G. K. Hansson. 1985. Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J. Clin. Invest. 76:125–131.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kawamoto, S. & R. S. Adelstein. 1987. Characterization of myosin heavy chains in cultured aorta smooth muscle cells. A comparative study. J, Biol, Chem. 262:7282–7288.Google Scholar
  57. Klurfeld, D. M. 1985. Identification of foam cells in human atherosclerotic lesions as macrophages using monoclonal antibodies. Arch. Pathol. Lab. Med. 109:445–449.PubMedPubMedCentralGoogle Scholar
  58. Knieriem, H. J., V. C. Y. Kao, R. W. Wissler. 1967. Actomyosin and myosin and the deposition of lipids and serum lipoproteins. Arch. Pathol. Lab, Med. 84:118–129.Google Scholar
  59. Kocher, O. & G. Gabbiani. 1986. Cytoskeletal features of normal and atheromatous human arterial smooth muscle cells. Human Pathol. 17:875–880.CrossRefGoogle Scholar
  60. Kocher, O. & G. Gabbiani. 1987. Analysis of a-smooth-muscle actin mRNA expression in rat aortic smooth-muscle cells using a specific cDNA probe. Differentiation, 34:201–209.PubMedCrossRefGoogle Scholar
  61. Kocher, O. & G. Gabbiani. 1988. Cytoskeletal features of normal and atheromatous human arterial smooth muscle cells. Human Pathol. 17:875–880.CrossRefGoogle Scholar
  62. Kocher, O., O. Skalli, W. S. Bloom & G. Gabbiani. 1984. Cytoskeleton of rat aortic smooth muscle cells. Normal conditions and experimental intimal thickening. Lab. Invest. 50:645–651.PubMedGoogle Scholar
  63. Kumar, C. C., S. R. Mohan, P. J. Zavodny, S. K. Narula and P. J. Leibowitz. 1989. Characterization and differential expression of human vascular smooth muscle myosin light chain 2 isoform in non-muscle cells. Biochem. 28:4027–4035.CrossRefGoogle Scholar
  64. Lamaziere, J-M. D., A. Desmouliere, M. Pascal & J. Larrue. 1988. Detection of atherosclerotic plaque with two monoclonal antibodies. 2P1A2 monoclonal antibody is specific for smooth muscle cells in atherosclerotic plaque. Atherosclerosis 74:115–126.PubMedCrossRefGoogle Scholar
  65. Langhans, Th. 1866. Beiträge zur normalen und pathologischen Anatomie der Arterien. Arch. Pathol. Anat. Physiol. Klin. Med. 36:187–226.CrossRefGoogle Scholar
  66. Larson, D. M., K. Fujiwara, R. W. Alexander & M. A. Gimbrone Jr. 1984. Myosin in cultured vascular smooth muscle cells: Immunofluorescence and immunochemical studies of alterations in antigenic expression. J. Cell Biol. 99:1582–1589.PubMedCrossRefGoogle Scholar
  67. Lehman, W., A. Sheldon and W. Madonia. 1987. Diversity in smooth muscle filament composition. Biochem. Biophys. Acta. 914:35–39.PubMedGoogle Scholar
  68. Lema, M. J., E. D. Pagani, R. Shemin & F. J. Julian. 1986. Myosin isozymes in rabbit and human smooth muscles. Circ. Res. 59:115–123.PubMedCrossRefGoogle Scholar
  69. Libby, P., S. J. C. Warner, R. N. Salomon & L. K. Birinyi. 1988. Production of platelet-derived growth factor-like mitogen by smooth-muscle cells from human atheroma. New Engl. J. Med. 318:1493–1498.PubMedCrossRefGoogle Scholar
  70. Majesky, M., E. P. Benditt & S. M. Schwartz. 1988. Expression and developmental control of platelet-derived growth factor A-chain and B-chain/5is genes in rat aortic smooth muscle cells. Proc. Natl. Acad. Sci. USA. 85:1524–1528.PubMedPubMedCentralCrossRefGoogle Scholar
  71. McGill, H. C. Jr. 1974. The lesion In: Atherosclerosis III. Shettler, G. & Weizel, A., eds. Berlin, Springer-Verlag, pp. 27–38.Google Scholar
  72. Mosse, P. R. L., G. R. Campbell & J. H. Campbell. 1986. Smooth muscle phenotypic expression in human carotid arteries. II. Atherosclerosis-free diffuse intimal thickenings compared with the media. Arteriosclerosis, 6:664–670.PubMedCrossRefGoogle Scholar
  73. Mosse, P. R. L., G. R. Campbell, Z-L. Wang & J. H. Campbell. 1985. Smooth muscle phenotypic expression in human carotid arteries. I. Comparison of cells from diffuse intimal thickenings adjacent to atheromatous plaques with those of the media. Lab. Invest. 53:556–562.PubMedGoogle Scholar
  74. Nagai, R., M. Kuro-o, P. Babij & M. Periasamy. 1989. Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis. J. Biol. Chem. 264:9734–9737.PubMedGoogle Scholar
  75. Orekhov, A. N., E. R. Andreeva, A. V. Krushinsky, I. D. Novikov, V. V. Tertov, G. V. Nestaiko, K. A. Khashimov, V. S. Repin, & V. N. Smirnov. 1986. Intimal cells and atherosclerosis. Relationship between the number of intimal cells and major manifestations of atherosclerosis in the human aorta. Amer. J. Pathol. 125:402–415.Google Scholar
  76. Orekhov, A. N., G. F. Kalantarov, E. R. Andreeva, N. W. Prokazova, I. N. Trakht, L. D. Bergelson, & V. N. Smirnov. 1986. Monoclonal antibody reveals heterogeneity in human aortic intima: Detection of a ganglioside antigen associated with a subpopulation of intimal cells. Mer, J. Pathol, 122:370–385.Google Scholar
  77. Orekhov, A. M., I. I. Karpova, V. V. Tertov, S. A. Rudchenko, E. R. Andreeva, A. V. Krushinsky & V. N. Smirnov. 1984. Cellular composition of atherosclerotic and uninvolved human aortic subendothelial intima. Light microscopic study of dissociated aortic cells, Mer. J. Pathol,. 115:17–24.Google Scholar
  78. Osborn, M., Caselitz, K., & K. Weber. 1987. Intermediate filament expression in human vascular smooth muscle and in arteriosclerotic plaques, VirghQwg Aygh, A, 411:449–458.Google Scholar
  79. Osborn, M., E. Debus & K. Weber. 1984. Monoclonal antibodies specific for vimentin. Eur. J. Cell Biol. 34:137–143.PubMedGoogle Scholar
  80. Owada, M. K., A. Hakura, K. lida, I. Yahara, K. Sobue & S. Kakiuchi. 1984. Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: Comparison of normal and transformed cells. Proc. Natl. Acad. Sci. USA 81:3133–3137.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Owens, G. K., A. Loeb, D. Gordon, & M. M. Thompson. 1986. Expression of smooth muscle - specific a-isoactin in cultured vascular smooth muscle cells: Relationship between growth and cytodifferentiation. J. Cell Biol, 102:343–352.PubMedCrossRefGoogle Scholar
  82. Printseva, O. Ju., M. M. Peclo, A. V. Tjurmin, A. I. Faerman, S. M. Danilov, V. S. Repin & V. N. Smirnov. 1989. A 90-Kd surface antigen from a subpopulation of smooth muscle cells from human atherosclerotic lesions. Amer. J. Pathol. 134:305–313.Google Scholar
  83. Roessner, A., A. Herrera, H. J. Honing, E. Vollmer, G. Zwaldo, R. Schurmann, C. Sorg & E. Grundmann. 1987. Identification of macrophages and smooth muscle cells with monoclonal antibodies in the human atherosclerotic plaque. Virchows Archiv. A. 412:169–174.CrossRefGoogle Scholar
  84. Ross, R. 1986. The pathogenesis of atherosclerosis - an update. N. Engl. J. Med. 314:488–500.PubMedCrossRefGoogle Scholar
  85. Ross R., T. N. Wight, E. Strandness, & B. Thiele. 1984. Human atherosclerosis. I. Cell constitution and characteristics of advanced lesions of the superficial femoral artery. Amer. J. Eatllili. 114:79–93.Google Scholar
  86. Rovner, A. S., R. A. Murphy and G. K. Owens. 1986. Expression of smooth muscle and non-muscle myosin heavy chains in cultured vascular smooth muscle cells. J. Biol. Chem. 261:14740–14745.PubMedPubMedCentralGoogle Scholar
  87. Rovner, A. S., M. M. Thompson & R. A. Murphy. 1986. Two different heavy chains are found in smooth muscle myosin. Amer. J. Physiol. 250:C861-C870.PubMedCrossRefGoogle Scholar
  88. Schaefer, H. E. 1981. The role of macrophages in atherosclerosis. In: Hematology and Blood Transfusion Vol. 27. Schmalzl, F., Hukn, D. and Schaefer, H. E. eds. New York. Springer-Verlag pp. 137–142.Google Scholar
  89. Schaffner, T., K. Taylor, E.J. Bartucci, K. Fischer-Dzoga, J.H. Beeson, S. Glagov & R.W. Wissler. 1980. Arterial foam cells with distinctive immunomorphologic and histochemical features of macrophages. Amer. J. Pathol. 100:57–80.Google Scholar
  90. Scidel, C.L., C.L. Wallace, D.K. Dennison & J.C. Allen. 1989. Vascular myosin expression during cytokinesis, attachment, and hypertrophy. Amer. J. Physiol. 256:C793-C798.CrossRefGoogle Scholar
  91. Scifert, R. & G.K. Hansson. 1989. Decay-accelerating factor is expressed on vascular smooth muscle cells in human atherosclerotic lesions. J. Clin. Invest, 84:597–604.CrossRefGoogle Scholar
  92. Siliciano, J. D. & S. W. Craig. 1987. Properties of smooth muscle meta-vinculin. J. Cell Biol. 104:473–482.PubMedCrossRefGoogle Scholar
  93. Sjolünd, M., U. Hedin, T. Sejersen, C-H. Heldin & J. Thyberg. 1988. Arterial smooth muscle cells express platelet-derived growth factor (PDGF) A chain mRNA secrete a PDGF-like mitogen, and bind exogenous PDGF in a phenotype- and growth state-dependent manner. J. Cell hiQl. 106:403–413.CrossRefGoogle Scholar
  94. Skalli, O., W. S. Bloom, P. Ropraz, B. Azzarone & G. Gabbiani. 1986. Cytoskeletal remodelling of rat aortic smooth muscle cells in vitro: relationships to culture conditions and analogies to in vivo situations. J. Submicrosc. Cytol. 18:481–493.PubMedGoogle Scholar
  95. Skalli, O., P. Ropraz, A. Trzeciak, G. Benzonana, D. Gillessen & G. Gabbiani. 1986. A monoclonal antibody against a-smooth muscle actin: A new probe for smooth muscle differentiation. J. Cell Bull. 103:2787–2796.CrossRefGoogle Scholar
  96. Stary, H. C. 1989. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis 9:119–132.Google Scholar
  97. Stary, H. C. & J. P. Strong. 1967. The fine structure of non-atherosclerotic intimal thickening, of developing, and of regressing atherosclerotic lesions at the bifurcation of left coronary artery. Adv. Exp. Med. Biol. 1:89–108.Google Scholar
  98. Tertov, V. v., A. N. Orekhov, G. Yu. Grigorian, G. S. Kurennaya, S. A. Kudryashov, V. A. Tkachuk & V. N. Smirnov. 1987. Disorders in the system of cyclic nucleotides in atherosclerosis: cyclic AMP and cyclic GMP content and activity of related enzymes in human aorta. Tiggyg and Cgll, 19:21–28.Google Scholar
  99. Tertov, V. v., A. N. Orekhov, S. A. Kudryashov, A. L. Klibanov, N. N. Ivanov, V. P. Torchilin & V. N. Smirnov. 1987. Cyclic nucleotides and atherosclerosis: Studies in primary culture of human aortic cells. EXP. MQI. Pathol. 47:377–389.CrossRefGoogle Scholar
  100. Thyberg, J., L. Palmberg, J. Nilsson, T. Ksiazek & M. Sjölund. 1983. Phenotype modulation in primary cultures of arterial smooth muscle cells. On the role of platelet derived growth factor. Differentation. 25:156–167.CrossRefGoogle Scholar
  101. Tsukada, T., M. Rosenfeld, R. Ross & A. M. Gown. 1986. Immunocytochemical analysis of cellular components in atherosclerotic lesions. Use of monoclonal antibodies with the Watanabe and fat-fed rabbit. Arteriosclerosis 6:601–617.PubMedCrossRefGoogle Scholar
  102. Tsukada, T., D. Tippeus, D. Gordon, R. Ross & A. Gown. 1987. HHF35, a muscle-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization. Amer. J. Pathol. 126:51–60.Google Scholar
  103. Ueki, N., K. Sobue, K. Kanda, T. Hada & K. Higashino. 1987. Expression of high and low molecular weight caldesmons during phenotypic modulation of smooth muscle cells. Proc. Natl. Acad. Sci. USA. 84:9049–9053.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Valente, A. J., R. Delgado, J. D. Metter, C. Cho, E.A. Sprague, C. J. Schwartz & D. T. Graves. 1988. Cultured primate aortic smooth muscle cells express both the PDGF-A and PDGF-B genes but do not secrete mitogenic activity or dimeric platelet-derived growth factor protein. J. Cell Physiol. 136:479–485.PubMedCrossRefGoogle Scholar
  105. Vandekerkhove, J. & K. Weber. 1978. At least six different actins are expressed in higher mammal: An analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J. Mol. Biol. 126:783–802.CrossRefGoogle Scholar
  106. Verheyen, A. K., E. M. Vlaminckx, F. M. Lauwers, M. L. Saint-Guillain & M. J. Borgers. 1988. Identification of macrophages in intimal thickening of rat carotid arteries by cytochemical localization of purine nucleoside Phosphorylase. Arteriosclerosis. 8:759–767.PubMedCrossRefGoogle Scholar
  107. Warner, S. J. C., G. B. Friedman & P. Libby. 1989. Regulation of major histocompatibility gene expression in human vascular smooth muscle cells. Arteriosclerosis 9:279–288.PubMedCrossRefGoogle Scholar
  108. Watanabe, T., M. Hirata, Y. Yoshikawa, Y. Nagafuchi, H. Toyoshima & T. Watanabe. 1985. Role of macrophages in atherosclerosis. Sequential observations of cholesterol-induced rabbit aortic lesion by the immunoperoxidase technique using monoclonal antimacrophage antibody. Lab. Invest. 53:80–90.PubMedGoogle Scholar
  109. Wilcox, J. N., K. M. Smith, L. T. Williams, S.M. Schwartz & D. Gordon. 1988. Platelet-derived growth factor mRNA detected in human atherosclerotic plaques by in situ hybridisation. J. Clin. Invest. 82:1134–1143.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wissler, R.W. 1968. The arterial medial cells, smooth muscle or multifunctional mesenchyme? J. Arteriosclerosis. 8:201–213.Google Scholar
  111. Yamada, K.M., S.K. Akiyama, T. Hasegawa, E. Hasegawa, M.J. Humphries, D.W. Kennedy, K. Nagara, H. Urushihara, K. Olden & W-T. Chen. 1985. Recent advances in research on fibronectin and other cell attachment proteins. J. Cell Biochem. 28:79–97.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • G. R. Campbell
    • 1
  • J. H. Campbell
    • 2
  1. 1.Department of AnatomyUniversity of MelbourneParkvilleAustralia
  2. 2.Baker Medical Research InstitutePrahranAustralia

Personalised recommendations