Influence of Carbon on the Strength of Adhesion of Iron to White Slags and Carbide Slags

  • S. I. Popel’
  • N. K. Dzhemilev


In tapping special steels from electric arc furnaces, the metal becomes appreciably higher in oxide inclusions, due to the absorption of droplets of furnace slag [1–3]. The tendency of this slag to become entrapped increases with increase in the calcium carbide content of the slag [4–5]. For reducing the content of inclusions, the carbon contained in the CaC2 must be oxidized, or the carbide slag must be removed from the furnace separately from the metal. In the meantime, there is not yet any unified opinion as to the properties which determine the tendency of slags to become entrapped in steel. It is natural to expect that it will depend on the re la tionship of the strength of the interaction of the ions in the slag itself and the strength of adhesion of the surface layer of the slag to the metal; if the interionic attraction in the oxide phase is weak, adhesion of the surface particles of the latter to the metal will be stronger, they will be detached more readily from the bulk of the slag and be carried along by the stream of metal.


Surface Tension Interfacial Tension Oxide Phase Iron Carbonyl Carbon Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. V. Stark and T. L. Kerlin, Stal’ Nos. 9–10, 1946.Google Scholar
  2. 2.
    S. G. Voinov and V. A. Boyarshinov, Stal’ No. 1, 1955.Google Scholar
  3. 3.
    F. P. Edneral, Sb. Tr. MIS, 32:105, 1954.Google Scholar
  4. 4.
    A. G. Shalimov, Author’s abstract of dissertation for the degree of Candidate of Technical Sciences, Moscow, 1956.Google Scholar
  5. 5.
    A. N. Korneenkov, V. D. Oshchepkov, F. V. Kozlov, and E. D. Mokhir, Stal’ No. 11, 1953.Google Scholar
  6. 6.
    S. I. Popel’, O. A. ’sin, and P. V. Gel’d, Dokl. Akad. Nauk SSSR 74:1097, 1950.Google Scholar
  7. 7.
    S. I. Popel’, Yu. P. Nikitin, and S. M. Ivanov, Graphs for Calculating Surface Tension from the Dimensions of a Drop, Sverdlovsk, 1961.Google Scholar
  8. 8.
    C. Mellor, Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. 14, II, 1934.Google Scholar
  9. 9.
    S. I. Popel’, Zh. Fiz. Khim. 32:2398, 1958.Google Scholar
  10. 10.
    S. I. Popel’ and O. A. Esin, Zh. Neorgan. Khim. 2(3), 1957.Google Scholar
  11. 11.
    P. V. Gel’d, O. A. Esin, and F. S. Maron, Zh. Prikl. Khim. 21(3), 1948.Google Scholar
  12. 12.
    S. I. Popel’, O. A. Esin, and Yu. P. Nikitin, Tr. Ural’sk. Politekhn. In st., Sb. 49, Metallurgizdat, 1954.Google Scholar
  13. 13.
    B. V. Tsarevskii and S. I. Popel’, Izv. Vuzov, Chernaya Met., No. 8, 1960.Google Scholar
  14. 14.
    R. N. Grigorash, Sb. Tr. Mosk. Inst. Stali, Vol. 12, 1939.Google Scholar
  15. 15.
    G. V. Musorin, Tr. Ural’sk. Politekhn. Inst. Sb. 75, Metallurgizdat, 1959.Google Scholar

Copyright information

© Consultants Bureau Enterprises, Inc. 1965

Authors and Affiliations

  • S. I. Popel’
    • 1
  • N. K. Dzhemilev
    • 1
  1. 1.S. M. Kirov Ural’sk Polytechnic InstituteUSSR

Personalised recommendations