Inverse Problems of Seismology (Structural Review)

  • V. I. Keilis-Borok
  • T. B. Yanovskaya


The inverse problem of seismology is formulated as follows.


Inverse Problem Inversion Method Love Waves Body Wave Free Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Adams, R. D., and M. J. Randall (1964), “The fine structure of the earth I score,” Bull. Seism. Soc. Amer., 54:1299–1314.Google Scholar
  2. 2.
    Andrianova, Z. S., V. I. Keilis-Borok, A. L. Levshin, and M. G. Neigauz (1965), Surface Love Waves, Moscow, Nauka [English translation: Seismic Love Waves, New York, Consultants Bureau, 1967].Google Scholar
  3. 3.
    Anderson, D. L., and R. Kovach (1964), “Attenuation in the mantle and rigidity of the core from multiply reflected core phases,” Proc. Nat. Acad. Sci. Wash., 51:168–172.CrossRefGoogle Scholar
  4. 4.
    Azbel’, I. Ya., V. I. Keilis-Borok, and T. B. Yanovskaya (1966), “A technique of joint interpretation of travel time and amplitude-distance curves in upper mantle studies,” Geophys. J. Roy. Astr. Soc., 11:25–55.CrossRefGoogle Scholar
  5. 5.
    Blagoveshchenskii, A. S. (1967), “The inverse problem in the theory of wave propagation,” in: (M. Sh. Birman, ed.), Topics in Mathematical Physics; Vol. 1: Spectral Theory and Wave Processes, New York, Consultants Bureau (1967).Google Scholar
  6. 6.
    Fedotov, S. A., N. N. Matveeva, R. Z. Tarakanov, and T. B. Yanovskaya (1964), “On longitudinal wave velocities in the upper mantle in the area of the Japanese and Kurile Islands,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 8, p. 1185.Google Scholar
  7. 7.
    Grudeva, N. P. (1966), “Dependence of earthquake magnitude on focal depth,” in: Computational Seismology, No. 2, Moscow, Nauka, pp. 104–120.Google Scholar
  8. 8.
    Gerver, M. L., and V. M. Markushevich, “Determining seismic-wave velocity from travel-time curves,” this volume, p. 123.Google Scholar
  9. 9.
    Gerver, M. L., and V. M. Markushevich, “Properties of surface-source travel-time curves,” this volume, p. 148.Google Scholar
  10. 10.
    Gutenberg, B. (1953), “Travel times of longitudinal waves from surface foci,” Proc. Nat. Acad. Sci. Wash., 39:849–853.CrossRefGoogle Scholar
  11. 11.
    Hannon, W. J., and R. L. Kovach (1966), “Velocity filtering of seismic core phases,” Bull. Seism. Soc. Amer., 56:441–454.Google Scholar
  12. 12.
    Jeffreys, H., and K. E. Bullen (1940), Seismological Tables, London, British Association for the Advancement of Science, Gray-Milne Trust.Google Scholar
  13. 13.
    Knopoff, L., and T. L. Teng (1965), “Analytical calculation of the seismic travel time problem,” Revs. Geophys., 3:11–24.CrossRefGoogle Scholar
  14. 14.
    Knopoff, L. (1967), “Density-velocity relations for rocks,” Geophys. J. Roy. Astr. Soc., 13:1–6.CrossRefGoogle Scholar
  15. 15.
    Levshin, A. L., T. M. Sabitova, and V. P. Valyus (1966), “Joint interpretation of body and surface waves for a district in Central Asia,” Geophys. J. Roy. Astr. Soc., 11:57–66.CrossRefGoogle Scholar
  16. 16.
    Lubimuva, E. A. (1966), “Temperature profiles under oceanic and continental crust,” in: The Crust and Upper Mantle of the Pacific Area, Washington, D.C., American Geophysical Union (1968), pp. 17–21.Google Scholar
  17. 17.
    Neigauz, M. G., and G. V. Shkadinskaya, “Method for calculating surface Rayleigh waves in a vertically inhomogeneous half-space,” this volume, p. 88.Google Scholar
  18. 18.
    Phinney, R. A. (1966), “Theoretical calculation of the spectrum, phase velocity, and decay of first arrivals in layered elastic systems,” Geophys. J. Roy. Astr. Soc., 11:260.Google Scholar
  19. 19.
    Alexander, S. S., and R. A. Phinney (1966), “A study of the core-mantle boundary using P waves diffracted by the earth’s core,” J. Geophys. Res., 71:5943–5958.CrossRefGoogle Scholar
  20. 20.
    Phinney, R. A., and S. S. Alexander (1966), “P wave diffraction theory and the structure of the core-mantle boundary,” J. Geophys. Res., 71:5959–5976.CrossRefGoogle Scholar
  21. 21.
    Press, F., and S. Biehler (1964), “Inference on crustal velocities and densities from P wave delays and gravity anomalies,” J. Geophys. Res., 69:2979–2996.CrossRefGoogle Scholar
  22. 22.
    Yanovskaya, T. B. (1963), “Determination of velocity distribution in the upper mantle as an inver se mathematical problem,” Izv. Akad. Nauk SSSR, Sere Geofiz., No. 8, pp. 1171–1178.Google Scholar
  23. 23.
    Yanovskaya, T. B., and I. Ya. Azbel’ (1964), “The determination of velocities in the upper mantle from observations of P waves,” Geophys. J. Roy. Astr. Soc., 8:313.Google Scholar
  24. 24.
    Yanovskaya, T. B. (1966), “Program for calculation of travel-time curves and amplitudes of body waves in layered media,” in: Problems of Quantitative Study of Seismic-Wave Propagation, No. 8, pp. 87–92.Google Scholar
  25. 25.
    Yanovskaya, T. B. (1968), “Inversion of travel times related to the inner core boundary,” paper presented at the Fifth International Symposium on Geophysical Theory and Computers, Tokyo.Google Scholar
  26. 26.
    Press, F. (1967), “Earth models obtained by Monte Carlo inversion,” paper presented at the Fourth International Symposium on Geophysical Theory and Computers, Trieste.Google Scholar
  27. 27.
    Backus, G. E., and F. Gilbert (1968), “The resolving power of gross earth data,” Geophys. J. Roy. Astr. Soc., 16:169–205.CrossRefGoogle Scholar
  28. 28.
    Markushevich, V. M., “Characteristic properties of deep-focus travel-time curves,” this volume, p. 172.Google Scholar
  29. 29.
    Valyus, V. P., “Determining seismic profiles from a set of observations,” this volume, p. 114.Google Scholar
  30. 30.
    Tuve, M. A., H. E. Tatel, and P. J. Hart (1954), “Crustal structure from seismic exploration,” J. Geophys. Res., 59:415–422.CrossRefGoogle Scholar

Copyright information

© Consultants Bureau, New York 1972

Authors and Affiliations

  • V. I. Keilis-Borok
  • T. B. Yanovskaya

There are no affiliations available

Personalised recommendations