Introduction Seismology and Logic

  • V. I. Keilis-Borok


About 1300 seismic stations are in operation in the world. Most of the 250,000 earthquakes they record annually are very weak and are detected only by a few nearby stations, but a few tens of strong earthquakes are recorded each year by the greater part of the world’s stations. On the average, about a million three-component records — three million curves — are obtained each year. Along with physical and geological information, these comprise the initial data for working out the principal problems of seismology: determination of the earth’s density and velocity structure, the study of seismically dangerous zones, and detection of underground nuclear explosions.


Focal Depth Love Wave Body Wave Wave Group Signal Identification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Andrianova, Z. S., V. I. Keilis-Borok, A. L. Levshin, and M. G. Neigauz (1965), Surface Love Waves, Moscow, Nauka. [English translation: Seismic Love Waves, Consultants Bureau, New York (1967).]Google Scholar
  2. 2.
    Azbel’, I. Ya., V. I. Keilis-Borok, and T. B. Yanovskaya (1966), “Method for joint interpretation of travel-time and amplitude curves in upper mantle studies,” in: Computational Seismology, No. 2, pp. 3–45.Google Scholar
  3. 3.
    Valyus, V. P., A. L. Levshin, and T. M. Sabitova (1966), “Joint interpretation of body and surface waves for one region of Central Asia,” in: Computational Seismology, No. 2, Moscow, Nauka, pp. 95–103.Google Scholar
  4. 4.
    Valyus, V. P., “Determining seismic profiles from a set of observations,” this volume, p. 114.Google Scholar
  5. 5.
    Keilis-Borok, V. I., S. S. Mebel’, I. I. Pyatetskii-Shapiro, L. Yu. Vartanova, and T. S. Zhelankina, “Computer determination of earthquake focal depth,” this volume, p. 16.Google Scholar
  6. 6.
    Vil’kovich, E. V., A. L. Levshin, and M. G. Neigauz (1966), “Love waves in a vertically inhomogeneous medium (allowance for sphericity, parameter variations, and absorption),” in: Computational Seismology, No. 2, Moscow, Nauka, pp. 130–149.Google Scholar
  7. 7.
    Gotsadze, O. D., V. I. Keilis-Borok, I. V. Kirillova, S. D. Kogan, T. I. Kukhtikova, L. N. Malinovskaya, and A. A. Sorskii (1957), “Investigation of earthquake mechanism,” Geofiz. Inst. Akad. Nauk SSSR, No. 40, p. 166.Google Scholar
  8. 8.
    Gutenberg, B., and C. F. Richter (1954), Seismicity of the Earth and Related Phenomena, Princeton, Princeton University Press.Google Scholar
  9. 9.
    Jeffreys, H. (1952), The Earth: Its Origin, History, and Physical Constitution, Cambridge, Cambridge University Press.Google Scholar
  10. 10.
    Keilis-Borok, V. I., I. L. Nersesov, and A. M. Yaglom (1962), Estimating the Economic Effect of Earthquake-proof Construction, Moscow, Izd. Akad. Nauk SSSR.Google Scholar
  11. 11.
    Buné, V. I., M. V. Gzovskii, and K. K. Zapolskii (1960), “Methods for detailed study of 24. seismicity,” Inst. Fiziki Zemlii Akad. Nauk SSSR, No.9, Chap. 6, p. 176.Google Scholar
  12. 12.
    Keilis-Borok, V. I., 1960, “The level of seismic energy and the level of the predominant frequency of earthquakes,” Inst. Seismostoikogo stroitel’stva i seismologii Akad. Nauk Tadzh. SSR, 6:33–39.Google Scholar
  13. 13.
    Keilis-Borok, V. I., 1967, “On using computers to study the structure and development of the earth,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 1, pp. 3–11.Google Scholar
  14. 14.
    Keilis-Borok, V. I., and A. S. Monin (1959), “Magnetoelastic waves and the boundary of the earth’s core,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 11, pp. 1529–1541.Google Scholar
  15. 15.
    Keilis-Borok, V. I., and L. N. Malinovskaya (1966), “On one relationship in the development of strong earthquakes,” in: Memorial Collection for Academician G. A. Gamburtsev, Moscow, Nauka, pp. 88–98.Google Scholar
  16. 16.
    Kilinchuk, L. M., and T. B. Yanovskaya (1968), “The amplitude of fundamental seismic waves. I. Waves propagated in the earth’s mantle,” in: Computational Seismology, No. 4, pp. 226–251, Moscow, Nauka.Google Scholar
  17. 17.
    Kolesnikov, Yu. A., L. N. Malinovskaya, and Yu. V. Sladkov (1968), “Spectral calibration of seismic stations,” in: Computational Seismology, No. 4, Moscow, Nauka, pp. 287–316.Google Scholar
  18. 18.
    Levshin, A. L. (1964), “Love waves and the low-velocity zone in the upper mantle,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 11, pp. 1595–1607.Google Scholar
  19. 19.
    Lyubimova, E. A. (1966), Research into the Earth’s Thermics, author’s abstract of doctoral dissertation, Institute of Physics of the Earth, Moscow.Google Scholar
  20. 20.
    Magnitskii, V. A. (1965), Internal Structure and Physics of the Earth, Moscow, Nedra. [English translation: NASA Technical Translation TTF-395, Washington, D.C., 1967.JGoogle Scholar
  21. 21.
    Naimark, B. M. (1966), “Algorithm for detecting a seismic signal against a background of microseisms,” in: Computational Seismology, No. 1, Moscow, Nauka, pp. 5–9.Google Scholar
  22. 22.
    Naimark, B. M. (1967), “Collection of ‘correlator’ programs for processing seismic observations,” in: Computational Seismology, No. 3, Moscow, Nauka, pp. 118–244.Google Scholar
  23. 23.
    Neigauz, M. G., and G. V. Shkadinskaya, “Method for calculating surface Rayleigh waves in a vertically inhomogeneous half-space,” this volume, p. 88.Google Scholar
  24. 24.
    Pisarenko, V. F., and T. G. Rautian (1966), “Statistical classification by certain criteria,” in: Computational Seismology, No. 2, Moscow, Nauka, pp. 150–182.Google Scholar
  25. 25.
    Pisarenko, V. F., and T. G. Rautian, “Effect of station and source factors on accuracy of seismic parameter determination,” this volume, p. 189.Google Scholar
  26. 26.
    Keilis-Borok, V. I., L. G. Pavlova, I. I. Pyatetskii-Shapiro, P. T. Reznyakovskii, and T. S. Zhelankina, “Computer determination of earthquake epicenters,” this volume, p. 16.Google Scholar
  27. 27.
    Richter, C. F. (1958), Elementary Seismology, San Francisco, W. H. Freeman and Co.Google Scholar
  28. 28.
    Yanovskaya, T. B. (1963), “Determination of the velocity distribution in the upper mantle as an inverse mathematical problem,” Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 8, pp. 1171–1178.Google Scholar
  29. 29.
    Yanovskaya, T. B. (1966), “Program for calculation of travel-time and amplitude curves of body waves in a layered medium,” in: Problems of Quantitative Study of Seismic Wave Dynamics, 8:87–92.Google Scholar
  30. 30.
    Berkner, L. V. (ed.) (1959), The Need for Fundamental Research in Seismology: Report of the Panel of Seismic Improvement, Washington, D.C., U.S. Department of State.Google Scholar
  31. 31.
    Bolt, B. A. (1960), “The revision of earthquake epicenters, focal depths, and origin times using a high-speed computer,” Geophys. J. Roy. Astr. Soc., 3:433.CrossRefGoogle Scholar
  32. 32.
    Brune, J. N., J. E. Nafe, and J. Oliver (1960), “A simplified method for the analysis and synthesis of dispersed wave trains,” J. Geophys. Res., 65:287–304.CrossRefGoogle Scholar
  33. 33.
    Ewing, M., W. S. Jardetzky, and F. Press (1957), Elastic Waves in Layered Media, New York, McGraw-Hill Book Co.Google Scholar
  34. 34.
    Gutenberg, B., and C. F. Richter, On Seismic Waves: Gerlands Beitr. z. Geophysik, 43:56 (1934); 45:280–360 (1935); 47:73–131 (1936); 54:94–136 (1939).Google Scholar
  35. 35.
    Reference omitted.Google Scholar
  36. 36.
    Keilis-Borok, V. I. (1964), Seismology and Logic, in: (H. Odishaw, ed.), Research in Geophysics, Vol. 2, Cambridge, MIT Press.Google Scholar
  37. 37.
    Yanovskaya, T. B., and I. Ya. Azbel’ (1964), “The determination of velocities in the upper mantle from the observations of P waves,” Geophys. J. Roy. Astr. Soc., 8:313.Google Scholar
  38. 38.
    Keilis-Borok, V. I., and T. B. Yanovskaya (1967), “Inverse problems of seismology (structural review),” Geophys. J. Roy. Astr. Soc., 13:223–234 (see also this volume, p. 109).CrossRefGoogle Scholar
  39. 39.
    Keilis-Borok, V. I., and L. N. Malinovskaya (1964), “One regularity in the occurrence of strong earthquakes,” J. Geophys. Res., 69:3019–3024.CrossRefGoogle Scholar
  40. 40.
    Knopoff, L., 1960, “Analytical calculation of the fault plane problem,” Publ. Dominion Obs. Ottawa, 24:309–315.Google Scholar
  41. 41.
    Levshin, A. L., M. G. Neigauz, and T. M. Sabitova (1965), “Spectra of Love waves and the depth of the normal source,” Geophys. J. Roy. Astr. Soc., 9:253–260.CrossRefGoogle Scholar
  42. 42.
    Lehmann, I., 1955, “The times of P and Sin northeastern America,” Ann. di Geofisica, 8:351–370.Google Scholar
  43. 43.
    Moltshan, G. M., V. F. Pisarenko, and N. A. Smirnova (1964), “Some statistical methods of detection of signal in the presence of noise,” Geophys. J. Roy. Astr. Soc., 8:319.Google Scholar
  44. 44.
    Proc. IEEE, Special Issue on Nuclear Test Detection: 53(12):1965.Google Scholar
  45. 45.
    Bullard, E., and W. Penney (conveners), “A discussion of recent advances in the technique of seismic recording and analysis,” Proc. Roy. Soc. Lond., 290A:287–476 (1966).Google Scholar
  46. 46.
    Tukey, J. W. (1962), “The future of data analysis,” Ann. Math. Stat., 33:1–67.CrossRefGoogle Scholar

Copyright information

© Consultants Bureau, New York 1972

Authors and Affiliations

  • V. I. Keilis-Borok

There are no affiliations available

Personalised recommendations