Advertisement

Role of Cyclic Nucleotides in Regulation of Differentiation of Nerve Cells

  • Kedar N. Prasad

Abstract

The possible involvement of adenosine 3′,5′-cyclic monophosphate (cAMP) in neural differentiation became apparent when it was demonstrated that an elevation of the intracellular level of cAMP in neuroblastoma cells induces, as well as increases, the expression of many differentiated functions characteristic of mature neurons.1 The process of neural differentiation involves many steps, including induction, cell migration, regulation of induced differentiated functions, and inhibition of cell division. However, neuroblastoma cells in many ways are differentiated already and possess several features of mature neurons which are expressed mostly at low levels. Therefore, neuroblastoma cells in culture may be suitable primarily for studying the regulation of differentiated functions, which are induced already, and in identifying genetic and structural features modified experimentally. To study the involvement of cAMP in neural induction, the experimental system developed by early embryologists or embryoid cells of teratocarcinoma must be used. Indeed, by using explants of gastrulae of amphibia, it has been shown2 that cAMP induces neural differentiation. An extensive modification of gene expression, associated with structural organization, must occur during the period of differentiation. Genetic and structural modifications occur sequentially, with each differentiated function becoming detectable at a precise time and for a defined purpose. The purpose of this chapter is to discuss the role of cAMP in regulating differentiated functions of nerve cells.

References

  1. 1.
    Prasad, K. N., Differentiation of neuroblastoma cells in culture, Biol. Rev. 50: 129165, 1975.CrossRefPubMedGoogle Scholar
  2. 2.
    Wahn, H. L., Lightbody, L. E., and Tchen, T. T., Induction of neural differentiation in culture of amphibian undetermined presumptive epidermis by cyclic AMP derivatives, Science 188: 366–369.CrossRefPubMedGoogle Scholar
  3. 3.
    Amano, T., Richelson, E., and Nirenberg, M., Neurotransmitter synthesis by neuroblastoma clones, Proc. Natl. Acad. Sci. U.S.A. 69: 258–263, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Biedler, J. L., Helson, L., and Spengler, B. A. Morphology and growth tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture, Cancer Res. 33: 2643–2652, 1973.Google Scholar
  5. 5.
    Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Kimes, B., Patrick, J., Steinbach, J. H., Culp, W., and Brandt, B. L., Clonal cell lines from rat central nervous system, Nature (London) 249: 224–227, 1974.CrossRefGoogle Scholar
  6. 6.
    Chambaut, A. M., Leray, F., and Hanoune, J., Relationship between cyclic AMP dependent protein kinase(s) and cyclic AMP binding protein(s) in rat liver, FEBS Lett. 15: 328–334, 1971.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee, P. C., and Jungmann, R. A., Ontogeny of cyclic AMP-dependent protein phosphokinase during hepatic development of the rat, Biochim. Biophys. Acta 399: 265–276, 1975.PubMedCrossRefGoogle Scholar
  8. 8.
    Prasad, N., Prasad, R., and Prasad, K. N., Electrophoretic patterns of glucose metabolizing enzymes and acid phosphatase in mouse and human neuroblastoma cells, Exp. Cell Res. 104: 273–277, 1977.CrossRefPubMedGoogle Scholar
  9. 9.
    Ciesielski-Treska, J. Mandel, P., Tholey, G., and Wurtz, B., Enzymatic activities modified during multiplication and differentiation of neuroblastoma cells, Nature (London), New Biol. 239:180–181, 1972.Google Scholar
  10. 10.
    Dawson, G., and Stoolmiller, A. C., Comparison of ganglioside composition of established mouse neuroblastoma cell strains grown in vivo and in tissue culture, J. Neurochem. 263: 225–226, 1976.CrossRefGoogle Scholar
  11. 11.
    Augusti-Tocco, G., and Sato, G., Establishment of functional clonal lines of neurons from mouse neuroblastoma, Proc. Natl. Acad. Sci. U.S.A. 64: 311–315, 1969.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Waymire, J. C., Weiner, N., and Prasad, K. N., Regulation of tyrosine hydroxylase activity in cultured mouse neuroblastoma cells. Elevation induced by analogs of adenosine 3’, 5’-cyclic monophosphate, Proc. Natl. Acad. Sci. U.S.A. 69: 2241–2245, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Prasad, R., Prasad, N., and Prasad, K. N., Esterase, malate, and lactate dehydrogenase activity in murine neuroblastoma, Science 181: 450–451, 1973.PubMedCrossRefGoogle Scholar
  14. 14.
    Tholey, G., Wurtz, B., Ciesielski-Treska, J., and Mandel, P., Lactate dehydrogenase in neuroblastoma clones, J. Neurochem. 23: 1083–1084, 1974.PubMedCrossRefGoogle Scholar
  15. 15.
    Prasad, K. N., Differentiation and growth of neuroblastoma cells and serum types, Trans. Ant. Soc. Neurochem. 87 (Abstr.), 1977.Google Scholar
  16. 16.
    Van Der, L. H., The “improperly” oriented pyramidal cell in the cerebral cortex and its possible bearing on the problem of neuronal growth and cell orientation, Bull. Johns Hopkins Hosp. 117: 228–250, 1965.Google Scholar
  17. 17.
    Bray, D., Branching patterns of individual sympathetic neurons in culture, J. Cell Biol. 56: 702–712, 1973.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Nelson, P., Ruffner, W., and Nirenberg, M., Neuronal tumor cell with excitable membranes grown in vitro, Proc. Natl. Acad. Sci. U.S.A. 64: 1004–1110, 1969.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Prasad, K. N., and Kumar, S., Cyclic AMP and the differentiation of neuroblastoma cells in culture, in: Control of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), pp. 581–594, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1974.Google Scholar
  20. 20.
    Prasad, K. N., and Hsie, A. W., Morphological differentiation of mouse neuro-blastoma cells induced in vitro by dibutyryl adenosine 3’:5’ cyclic monophosphate, Nature (London) New Biol. 233: 141–142, 1971.CrossRefGoogle Scholar
  21. 21.
    Furmanski, P., Silverman, D. J., and Lubin, M., Expression of differentiated functions in mouse neuroblastoma mediated by dibutyryl cyclic adenosine monophosphate, Nature (London) 233: 413–415, 1971.CrossRefGoogle Scholar
  22. 22.
    Prasad, K. N., Morphological differentiation induced by prostaglandin in mouse neuroblastoma cells in culture, Nature (London), New Biol. 236: 49–52, 1972.CrossRefGoogle Scholar
  23. 23.
    Prasad, K. N., and Sheppard, J. R. Inhibitors of cyclic nucleotide phosphodiesterase induce morphological differentiation of mouse neuroblastoma cell culture, Exp. Cell. Res. 73: 436–440, 1972.PubMedCrossRefGoogle Scholar
  24. 24.
    Seeds, N. W., Gilman, A. G., Amano, T., and Nirenberg, M. W., Regulation of axon formation by clonal lines of a neural tumor, Proc. Natl. Acad. Sci. U.S.A. 66: 160–167, 1970.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Prasad, K. N., X-ray induced morphological differentiation of mouse neuroblastoma cells in vitro, Nature (London) 234: 471–474, 1971.CrossRefGoogle Scholar
  26. 26.
    Schubert, D., and Jacob, F., 5-bromodeoxyuridine-induced differentiation of a neuroblastoma, Proc. Natl. Acad. Sci. U.S.A. 67: 247–254, 1970.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Prasad, K. N., Mandal, B., and Kumar, S., Human neuroblastoma cell culture: Effect of 5-bromodeoxyuridine on morphological differentiation and levels of neural enzymes, Proc. Soc. Exp. Biol. Med. 144: 38–42, 1973.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Helson, L., Management of disseminated neuroblastoma, Ca 25: 264–268, 1975.PubMedGoogle Scholar
  29. 29.
    Prasad, K. N., Differentiation of neuroblastoma cells induced in culture by 6-thioguanine, Int. J. Cancer 12: 631–6635, 1973.Google Scholar
  30. 30.
    Kates, J. R., Winterton, R., and Schlesinger, K., Induction of acetylcholinesterase activity in mouse neuroblastoma tissue culture cells, Nature (London) 229: 345–346, 1971.CrossRefGoogle Scholar
  31. 31.
    Byfield, J. E., and Karlsson, U., Inhibition of replication and differentiation in malignant mouse neuroblasts, Cell Differ. 2: 55–64, 1973.CrossRefPubMedGoogle Scholar
  32. 32.
    Monard, D., Solomon, F., Rentsch, M., and Gysin, R., Glial-induced morphological differentiation in neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 70: 1894–1897, 1973.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Reynolds, C. P., and Perez-Polo, J. R., Human neuroblastoma: Glial induced morphological differentiation, Neurosci. Lett. 1: 91–97, 1975.CrossRefPubMedGoogle Scholar
  34. 34.
    Ross, J., Granett, S., and Rosenbaum, J. L., Differentiation of neuroblastoma cells in hypertonic medium, J. Cell Biol. 59: 291a, 1973.Google Scholar
  35. 35.
    Goldstein, M. N., Land, V., and Bradshaw, R., Stimulation of human neuroblastomas in vitro with nerve growth factor, Proc. Am. Assoc. Cancer Res. 3:89, a, 1972.Google Scholar
  36. 36.
    Waris, T., Richard, L., and Wads, P., Differentiation of neuroblastoma cells induced by nerve growth factor in vitro, Experientia 29: 1128–1129, 1973.CrossRefPubMedGoogle Scholar
  37. 37.
    Furmanski, P., and Lubin, M., Effects of dimethysulfoxide on expression of differentiated functions in mouse neuroblastoma, J. Natl. Cancer Inst. 48: 1355–1361, 1972.PubMedGoogle Scholar
  38. 38.
    Prasad, K. N., Effect of cytochalasin B and vinblastine on x-ray, dibutyryl cyclic AMP and prostaglandin-induced differentiation of mouse neuroblastoma cell culture, Cytobios 5: 265–271, 1972.Google Scholar
  39. 39.
    Hinkley, R. E., and Telser, A. G., The effect of halothane on cultured mouse neuroblastoma cells. Inhibition of morphological differentiation, J. Cell. Biol. 63: 531–540, 1974.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sheppard, J. R., and Prasad, K. N., Cyclic AMP levels and the morphological differentiation of mouse neuroblastoma cells, Life Sci. 12: 431–439, 1973.CrossRefGoogle Scholar
  41. 41.
    Miller, R. A., and Ruddle, F. H., Enucleated neuroblastoma cells form neuntes when treated with dibutyryl cyclic AMP, J. Cell Biol. 63: 295–299, 1974.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Schubert, D., Humphreys, S., Vitry, F., and Jacob, F., Induced differentiation of a neuroblastoma, Dev. Biol. 52: 514–546, 1971.CrossRefGoogle Scholar
  43. 43.
    Prasad, K. N., Neuroblastoma clones: Prostaglandin versus dibutyryl cyclic AMP, 8-benzylthio-cyclic AMP, phosphodiesterase inhibitors and x-ray, Proc. Soc. Exp. Biol. Med. 140: 126–129, 1972.PubMedCrossRefGoogle Scholar
  44. 44.
    Kimhi, Y., Palfrey, C., Spector, I., Barak, Y., and Littauer, U. Z., Maturation of neuroblastoma cells in the presence of dimethylsulfoxide. Proc. Natl. Acad. Sci. U.S.A. 73: 462–466, 1976.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kirkland, W. L., and Burton, P. R., Cyclic adenosine monophosphate mediated stabilization of mouse neuroblastoma cell neurite microtubules exposed to low temperature, Nature (London), New Biol. 240: 205–207, 1972.CrossRefGoogle Scholar
  46. 46.
    Helson, L., and Biedler, J. L., Catecholamines in neuroblastoma cells from human bone marrow, tissue culture and murine C-1300 tumor, Cancer 31: 1087–1091, 1973.PubMedCrossRefGoogle Scholar
  47. 47.
    Herschman, H. R., and Lerner, M. P., Production of a nervous–system specific protein (14–3–2) by human neuroblastoma cells in culture, Nature (London), New Biol. 241: 242 – 244, 1973.CrossRefGoogle Scholar
  48. 48.
    Prasad, K. N., and Gilmer, K. N., Demonstration of dopamine-sensitive adenylate cyclase in malignant neuroblastoma cells and change in sensitivity of adenylate cyclase to catecholamines in “differentiated” cells, Proc. Natl. Acad. Sci. U.S.A. 71: 2525–2529, 1974.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Prasad, K. N., Gilmer, K. N., Sahu, S. K., and Becker, G., Effect of neurotransmitters, guanosine triphosphate and divalent ions on the regulation of adenylate cyclase activity in malignant and adenosine cyclic 3’:5’-monophosphateinduced differentiated neuroblastoma cells, Cancer Res. 35: 77–81, 1975.PubMedGoogle Scholar
  50. 50.
    Kimes, B., Tarikas, H., and Schubert, D., Neurotransmitter synthesis by two clonal nerve cell lines: changes with culture growth and morphological differentiation, Brain Res. 79: 291–295, 1974.PubMedCrossRefGoogle Scholar
  51. 51.
    Levi-Montalcini, R., and Angeletti, P. U., Essential role of nerve growth factor in survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro, Dev. Biol. 7: 653–6659, 1963.CrossRefGoogle Scholar
  52. 52.
    Levi-Montalcini, R., and Angeletti, P. U., Nerve growth factor, Physiol. Rev. 48: 534–569, 1968.PubMedCrossRefGoogle Scholar
  53. 53.
    Roisen, F., J., Murphy, R. A., Pichichero, M. E., and Braden, W. G., Cyclic adenosine monophosphate stimulation of axonal elongation, Science 175: 73–74, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Haas, D. C., Hier, D. B., Arnason, B. G. W., and Young, M., On a possible relationship of cyclic AMP to the mechanism of action of nerve growth factor, Proc. Soc. Exp. Biol. Med. 140: 45–47, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Nikodijevic, B., Nikodijevic, O., Yu, M. W., Pollard, H., and Guroff, G., The effect of nerve growth factor on cyclic AMP levels in superior cervical ganglia of the rat, Proc. Natl. Acad. Sci. U.S.A. 72: 4769–4771, 1975.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ross, J., Olmsted, J. B., and Rosenbaum, J. L., The ultrastructure of mouse neuroblastoma cell in tissue culture. Tissue Cell 7: 107–136, 1975.PubMedCrossRefGoogle Scholar
  57. 57.
    Chang, C. M., and Goldman, R. D., The localization of actin-like fibres in cultured neuroblastoma cells as revealed by heavy meromyosin binding, J. Cell Biol. 57: 867–874, 1973.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Heuser, J. E., and Reese, T. S., Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction, J. Cell Biol. 57: 315–344, 1973.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Augusti-Tocco, G., Sato, G., Claude, P., and Potter, D., Clonal cell lines of neurons, in: Control Mechanisms in the Expression of Cellular Phenotypes (H. A. Padykula, ed.), pp. 109–120, Academic Press, New York, 1970.CrossRefGoogle Scholar
  60. 60.
    Breakefield, X. O., Neale, E. A., Neale, J. H., and Jacobowitz, D. M., Localized catecholamine storage associated with granules in murine neuroblastoma cells, Brain Res. 92: 237–256, 1975.CrossRefGoogle Scholar
  61. 61.
    Peters, A., Palay, S. L., and Webster, H. De F., Fine Structure of the Nervous System, p. 198, Harper and Row, New York, 1970.Google Scholar
  62. 62.
    Chalazonitis, A., and Greene, L. A., Enhancement in excitability properties of mouse neuroblastoma cell cultured in the presence of dibutyryl cyclic AMP, Brain Res. 72: 340–345, 1974.PubMedCrossRefGoogle Scholar
  63. 63.
    Nelson, P., Christian, C., and Nirenberg, M., Synapse formation between clonal neuroblastoma x glioma hybrid cells and striated muscle cells, Proc. Natl. Acad. Sci. U.S.A. 73: 123–127, 1976PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Redfern, P. A., Neuromuscular transmission in newborn rats, J. Physiol. (London) 209: 701–709, 1970.CrossRefGoogle Scholar
  65. 65.
    Bennet, M. R., and Pettigrew, A. G., The formation of synapses in striated muscle during development, J. Physiol. (London) 241: 515–545, 1974.CrossRefGoogle Scholar
  66. 66.
    Diamond, J., and Miledi, R., A study of foetal and new-born rat muscle fibres, J. Physiol. (London) 162: 393–408, 1962.CrossRefGoogle Scholar
  67. 67.
    Fischbach, G. D. Synapse formation between dissociated nerve and muscle cells in low density cell cultures, Dev. Biol. 28: 407–429, 1972.PubMedCrossRefGoogle Scholar
  68. 68.
    Steinbach, J. H., Harris, A. J., Patrick, J., Schubert, D., and Heinemann, S., Nerve-muscle interaction in vitro. Role of acetylcholine, Gen. Physiol. 62: 255–270, 1973.CrossRefGoogle Scholar
  69. 69.
    Sytkowski, A. J., Vogel, Z., and Nirenberg, M. W., Development of acetylcholine receptor clusters on cultured muscle cells, Proc. Natl. Acad. Sci. U.S.A. 70: 270–274, 1973.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Fischbach, G. D., L. Cohen, S. A., The distribution of acetylcholine sensitivity over uninnervated and innervated muscle fibers grown in cell culture, Dev. Biol. 31: 147–162, 1973.PubMedCrossRefGoogle Scholar
  71. 71.
    Landmesser, L., Contractile and electrical responses of vagus innervated frog sartorius muscles, J. Physiol. (London) 213: 707–725, 1971.CrossRefGoogle Scholar
  72. 72.
    Nurse, C. A., and O’Lague, P. H., Formation of cholinergic synapses between dissociated sympathetic neurons and skeletal myotubes of the rat in cell culture, Proc. Natl. Acad. Sci. U.S.A. 72: 1955–1959, 1975.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Prasad, K. N., and Sheppard, J. R., Neuroblastoma cell culture: Membrane changes during cyclic AMP-induced morphological differentiation, Proc. Soc. Exp. Biol. Med. 141: 240–243, 1972.PubMedCrossRefGoogle Scholar
  74. 74.
    Glick, M. C., Kimhi, Y., and Littauer, U. Z., Glycopeptides from surface membranes of neuroblastoma cells. Proc. Natl. Acad. Sci. U.S.A. 70: 1682–1687, 1973.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Truding, R., Shelanski, M. L., Daniels, M. P., and Morel!, P., Comparison of surface membranes isolated from cultured murine neuroblastoma cells in the differentiated or undifferentiated state, J. Biol. Chem. 249: 3973–3982, 1974.PubMedGoogle Scholar
  76. 76.
    Brown, J. C., Surface glycoprotein characteristic of the differentiated state of neuroblastoma C-1300 cells, Exp. Cell Res. 69: 440142, 1972.PubMedCrossRefGoogle Scholar
  77. 78.
    Lazo, J. S., Prasad, K. N., and Ruddon, R. W., Synthesis and phosphorylation of chromatin-associated proteins in cAMP-induced “differentiated” neuroblastoma cells in culture, Exp. Cell Res. 100: 41–46, 1976.CrossRefPubMedGoogle Scholar
  78. 79.
    Ehrlich, Y. H., Brunngraber, E. G., Sinha, P. K., and Prasad, K. N., Specific alterations in phosphorylation of cytosol proteins from differentiating neuroblastoma cells grown in culture, Nature (London) 265: 238–241, 1977.CrossRefGoogle Scholar
  79. 80.
    Prasad, K. N., Mandal, B., Waymire, J. C., Lees, G. J., Vernadakis, A., and Weiner, N., Basal level of neurotransmitters synthesizing enzymes and effect of cyclic AMP agents on morphological differentiation of isolated neuroblastoma clones, Nature (London), New Biol. 241: 117–119, 1973.CrossRefGoogle Scholar
  80. 81.
    Prasad, K. N., Gilmer, K., and Kumar, S., Morphologically “differentiated” mouse neuroblastoma cells induced by non-cyclic AMP agents: Level of cyclic AMP, nucleic acid and protein, Proc. Soc. Exp. Biol. Med. 143: 1168–1171, 1973.CrossRefPubMedGoogle Scholar
  81. 82.
    Prasad, K. N., Waymire, J. C., and Weiner, N. A., Further study on the morphology and biochemistry of x-ray and dibutyryl cyclic AMP-induced “differentiated” neuroblastoma cells in culture, Exp. Cell Res. 74: 110–114, 1972.CrossRefPubMedGoogle Scholar
  82. 83.
    Richelson, E., Stimulation of tyrosine hydroxylase activity in an adrenergic clone of mouse neuroblastoma by dibutyryl cyclic AMP, Nature (London) New Biol. 242: 175–177, 1973.CrossRefGoogle Scholar
  83. 84.
    Orenberg, E. K., Vandenberg, S. R., Barchas, J. D., and Herman, M. M., Neurochemical studies in a mouse teratoma with neuroepithelial differentiation. Presence of cyclic AMP, serotonin and enzymes of the serotonergic, adrenergic and cholinergic systems, Brain Res. 101: 273–281, 1976.PubMedCrossRefGoogle Scholar
  84. 85.
    Richelson, E., and Thompson, E. J., Transport of neurotransmitter precursors into cultured cells, Nature (London), New Biol. 241: 201–204, 1973.CrossRefGoogle Scholar
  85. 86.
    Wexler, B., and Katzman, R., Effect of dibutyryl cyclic AMP and dexamethasone on noradrenaline synthesis in isolated superior cervical ganglia, J. Neurochem. 22: 5–10, 1974.CrossRefGoogle Scholar
  86. 87.
    Culver, B., Sahu, S. K., Vernadakis, A., and Prasad, K. N., Effects of 5-(3,3-dimethyl-1-triazeno) imidazole-4-carboxamide (NSC 45388, DTIC) on neuroblastoma cells in culture, Biochem. Biophys. Res. Commun. 76: 778–783, 1977.PubMedCrossRefGoogle Scholar
  87. 88.
    Mackay, A. V. P., and Iversen, L. I., Increased tyrosine hydroxylase activity of sympathetic ganglia cultured in the presence of dibutyryl cyclic AMP, Brain Res. 48: 424–426, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 89.
    Anagnoste, B., Shirron, C., Friedman, E., and Goldstein, M., Effect of dibutyryl cyclic adenosine monophosphate on 14C-dopamine biosynthesis in rat brain striatal slices. J. Pharmacol. Exp. Ther. 191: 370–376, 1974.PubMedGoogle Scholar
  89. 90.
    Goldstein, M., Bronaugh, R. L., Ebstein, B., and Roberge, C., Stimulation of tyrosine hydroxylase activity by cyclic AMP in synaptosomes and in soluble striatal enzyme preparations, Brain Res. 109: 563–574, 1976.PubMedCrossRefGoogle Scholar
  90. 91.
    Anagnoste, B., Freedman, L. S., Goldstein, M., Broome, J.and Fuxe, K., Dopamine ß-hydroxylase activity in mouse neuroblastoma tumors and in cell cultures, Proc. Natl. Acad. Sci. U.S.A. 69: 1883–1886, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 92.
    Hamprecht, B., Traber, J., and Lamprecht, F., Dopamine /3-hydroxylase activity in cholinergic neuroblastoma x glioma hybrid cells; increase of activity by N602’dibutyryl adenosine 3’:5’-cyclic monophosphate, FEBS Lett. 42: 221–226, 1974.PubMedCrossRefGoogle Scholar
  92. 93.
    Keen, P., and McLean, W. G., Effect of dibutyryl cyclic AMP on levels of dopamine ß-hydroxylase in isolated superior cervical ganglia, Arch. Pharmacol. 275: 465–469, 1972.CrossRefGoogle Scholar
  93. 94.
    Keen, P., and McLean, W. G., Effect of dibutyryl cyclic AMP and dexamethasone on noradrenaline synthesis in isolated superior cervical ganglia, J. Neurochent. 22: 5–10, 1974.CrossRefGoogle Scholar
  94. 95.
    Molinoff, P. B., and Axelrod, J., Biochemistry of catecholamines, Ann. Rev. Biochem. 40: 465–500, 1971.PubMedCrossRefGoogle Scholar
  95. 96.
    Thoenen, H., Neuronally mediated enzyme induction in adrenergic neurons and adrenal chromaffin cells, Biochem. Soc. Symp. 36: 3–15, 1972.Google Scholar
  96. 97.
    Thoenen, H., Mueller, R. A., and Axelrod, J., Increased tyrosine hydroxylase activity after drug-induced alteration of sympathetic transmission, Nature (London) 221: 1264, 1969.CrossRefGoogle Scholar
  97. 98.
    Molinoff, P. B., Brimijoin, S., Weinshilboum, R., and Axelrod, J., Neurally mediated increase in dopamine-ß-hydroxylase activity, Proc. Natl. Acad. Sci. U.S.A. 66: 453–458, 1970.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 99.
    Mueller, R. A., Thoenen, H., and Axelrod, J., Inhibition of neuronally induced tyrosine hydroxylase by nicotinic receptor blockade, Eur. J. Pharmacol. 10: 51–56, 1970.PubMedCrossRefGoogle Scholar
  99. 100.
    Patrick, R. L., and Kirshner, N., Acetylcholine-induced stimulation of catecholamine recovery in denervated rat adrenal after reserpine-induced depletion, Mol. Pharmacol. 7: 389–396, 1971.PubMedGoogle Scholar
  100. 101.
    Guidotti, A., and Costa, E., Involvement of adenosine 3’,5’-monophosphate in the activation of tyrosine hydroxylase elicited drugs, Science 179: 902–904, 1973.PubMedCrossRefGoogle Scholar
  101. 102.
    McAfee, D. A., Schorderet, M., and Greengard, P., Adenosine 3’,5’monophosphate in nervous tissue: Increase associated with synaptic transmission, Science 171: 1156–1158, 1971.PubMedCrossRefGoogle Scholar
  102. 103.
    Greengard, P., and McAfee, D. A., Adenosine 3’-cyclic monophosphate as a mediator in the action of neurohumoral agents, Biochem. Soc. Symp. 36: 87–102, 1972.Google Scholar
  103. 104.
    Costa, E., and Guidotti, A., The role of 3’,5’-cyclic adenosine monophosphate in the regulation of adrenal medullary function, in: New Concepts in Neurotransmitter Regulation (A. J. Mandell, ed.), pp. 135–152, Plenum Press, New York, 1973.CrossRefGoogle Scholar
  104. 105.
    Goodman, R., Oesch, F., and Thoenen, H., Changes in enzyme patterns produced by high potassium concentration and diburyryl cyclic AMP in organ cultures of sympathetic ganglia, J. Neurochem. 23: 369–378, 1974.PubMedCrossRefGoogle Scholar
  105. 106.
    Otten, U., Mueller, R. A., Oesch, F., and Thoenen, H., Location of an isoproterenol-responsive cyclic AMP pool in adrenergic nerve cell bodies and its relationship to tyrosine 3-monooxygenase induction, Proc. Natl. Acad. Sci. U.S.A. 71: 2217–2221, 1974.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 107.
    Prasad, K. N., and Mandal, B., Choline acetyltransferase level in cyclic AMP and x-ray induced morphologically differentiated neuroblastoma cells in culture, Cytobios 8: 75–80, 1973.PubMedGoogle Scholar
  107. 108.
    Simantov, R., and Sachs, L., Enzyme regulation in neuroblastoma cells, selection of clones with low acetylcholinesterase activity and the independent control of acetylcholinesterase and choline-O-acetyl-transferase, Eur. J. Biochem. 30: 123129, 1972.Google Scholar
  108. 109.
    Rosenberg, R. N., Vandeventer, L., De Francesco, L., and Friedkin, M. E., Regulation of the synthesis of choline-O-acetyltransferase and thymidylate synthetase in mouse neuroblastoma in cell culture, Proc. Natl. Acad. Sci. U.S.A. 68: 1436–1440, 1971.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 110.
    Prasad, K. N., and Mandal, B., Catechol-o-methyl-transferase activity in dibutyryl cyclic AMP, prostaglandin and x-ray-induced differentiated neuroblastoma cell culture, Exp. Cell Res. 74: 532–534, 1972.PubMedCrossRefGoogle Scholar
  110. 111.
    Prasad, K. N., and Vernadakis, A., Morphological and biochemical study in x-ray and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells, Exp. Cell Res. 70: 27–32, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 112.
    Lanks, K. W., Turnbull, J. D., Aloyo, V. J., Dorwin, J. M., and Papirmeister, B., Sulfur mustards induce neurite extension and acetylcholinesterase synthesis in cultured neuroblastoma cell, Exp. Cell Res. 93: 355–362, 1975.PubMedCrossRefGoogle Scholar
  112. 113.
    Ruffner, B. W., and Smith, M., Biochemical differentiation of a murine ganglioneuroblastoma in tissue culture, Exp. Cell Res. 89: 442–447, 1974.PubMedCrossRefGoogle Scholar
  113. 114.
    Schneider, F. H., Effect of sodium butyrate on mouse neuroblastoma cells in culture, Biochem. Pharmacol. 25: 2309–2317, 1976.PubMedCrossRefGoogle Scholar
  114. 115.
    Lanks, K. W., Dorwin, J. M., and Papirmeister, B., Increased rate of acetyl-cholinesterase synthesis in differentiating neuroblastoma cells, J. Cell Biol. 63: 824–830, 1974.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 116.
    Cox, G. C., and Juniper, B. E., Autoradiographic evidence for paramural-body function, Nature (London) New Biol. 243: 116–117, 1973.Google Scholar
  116. 117.
    Simantov, R., and Sachs, L., Regulation of acetylcholine receptors in relation to acetylcholinesterase in neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 70: 2902 2905, 1973.Google Scholar
  117. 118.
    Simantov, R., and Sachs, L., Different mechanisms for the induction of acetyl-cholinesterase in neuroblastoma cells, Dev. Biol. 45: 382–385, 1975.PubMedCrossRefGoogle Scholar
  118. 119.
    Ruffner, B. W., and Grieshaber, D. M., Biochemical differentiation of a murine neuroblastoma in vitro and in vivo, Cancer Res. 34: 551–558, 1974.PubMedGoogle Scholar
  119. 120.
    Harkins, J., Arsenault, M., Schlesinger, K., and Kates, J., Induction of neuronal functions: Acetylcholine-induced acetylcholinesterase activity in mouse neuro-blastoma cells, Proc. Natl. Acad. Sci. U.S.A. 69: 3161–3164, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 121.
    LaBrosse, E. H., and Karon, M., Catechol-O-methyltransferase activity in neuro-blastoma tumour, Nature (London) 196: 1222–1223, 1962.CrossRefGoogle Scholar
  121. 122.
    Blume, A., Gilbert, F., Wilson, S., Farber, J., Rosenberg, R., and Nirenberg, M.,Regulation of acetylcholinesterase in neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 67: 786–792, 1970.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 123.
    Basu, S., Moskal, J. R., and Gardner, D. A., Scanning electronmicroscopic and glycosphingolipid biosynthetic studies of differentiating mouse neuroblastoma cells, in: Ganglioside Function: Biochemical and Pharmacological Implications (G. Porcellati, B. Ceccarelli, and G. Tettamanti, eds.), pp. 45–663, Plenum Press, New York, 1976.CrossRefGoogle Scholar
  123. 124.
    Moskal, J. R., Gardner, D. A., and Basu, S., Changes in glycolipid glycosyltransferases and glutamate decarboxylase and their relationship to differentiation in neuroblastoma cells, Biochem. Biophys. Res. Commun. 61: 751–758, 1974.PubMedCrossRefGoogle Scholar
  124. 125.
    Phillipson, O. T., and Sandler, M., The influence of nerve growth factor, potassium depolarization and dibutyryl (cyclic) adenosine 3’,5’-monophosphate on explant cultures of chick embryo sympathetic ganglia, Brain Res. 90: 273–281, 1975.CrossRefPubMedGoogle Scholar
  125. 126.
    Schimizu, H., Creveling, C. R., and Daly, J. W., Effect of membrane depolarization and biogenic amines on the formation of cyclic AMP in incubated brain slices, in: Role of Cyclic AMP in Cell Function, Vol. 3 (P. Greengard and E. Costa, eds.), pp. 135–154, Raven Press, New York, 1970.Google Scholar
  126. 127.
    Cohen, S. S., Introduction to Polyamines, 179 pp., Prentice Hall, Englewood Cliffs, N.J., 1971.Google Scholar
  127. 128.
    Bachrach, U., Cyclic AMP-mediated induction of ornithine decarboxylase of glioma and neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 72: 3087–3091, 1975.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 129.
    Anderson, T. R., and Schanberg, S. M., Ornithine decarboxylase activity in developing rat brain, J. Neurochem. 19: 1471–1478, 1972.PubMedCrossRefGoogle Scholar
  129. 130.
    Sturman, J. A., and Gaull, G. E., Polyamine biosynthesis in human fetal liver and brain, Pediat. Res. 8: 231–237, 1974.PubMedCrossRefGoogle Scholar
  130. 131.
    Bachrach, U., Induction of ornithine decarboxylase in glioma and neuroblastoma cells, FEBS Lett. 68: 63–67, 1976.PubMedCrossRefGoogle Scholar
  131. 132.
    Nissen, C., Ciesielski-Treska, J., Hertz, L., and Mandel, P., Regulation of oxygen consumption in neuroblastoma cells. Effects of differentiation and of potassium, J. Neurochem. 20: 1029–1035, 1973.PubMedCrossRefGoogle Scholar
  132. 133.
    Nissen, C., Ciesielski-Treska, J., Hertz, L., and Mandel, P., Rates of oxygen uptake in proliferating and differentiating neuroblastoma cells, Brain Res. 39: 264–267, 1972.PubMedCrossRefGoogle Scholar
  133. 134.
    Prasad, K. N., Sahu, S. K., and Kumar, S., Relationship between cyclic AMP level and differentiation of neuroblastoma cells in culture, in: Differentiation and Control of Malignancy of Tumor Cells (W. Nakahara, T. Ono, T. Sugimura, and H. Sugano, eds.), pp. 287–309, University of Tokyo Press, Tokyo, 1974.Google Scholar
  134. 135.
    Ciesielski-Treska, J., Tholey, G., Wurtz, B., and Mandel, P., Enzymic modifications in a cultivated neuroblastoma clone after bromodeoxyuridine treatment, J. Neurochem. 26: 465–469, 1976.PubMedCrossRefGoogle Scholar
  135. 136.
    Criss, W. E., A review of isozymes in cancer, Cancer Res. 31: 1523–1542, 1971.PubMedGoogle Scholar
  136. 137.
    Dawson, G., Kemp, S. F., Stoolmiller, A. C., and Dorfman, A., Biosynthesis of glycosphingolipids by mouse neuroblastoma (NB41A) rat glia (RGC-6) and human glia (CHB-4) in cell culture, Biochem. Biophys. Res. Commun. 44: 687–694, 1971.PubMedCrossRefGoogle Scholar
  137. 138.
    Yogeeswaran, G., Murray, R. K., Pearson, M. L., Sanwal, B. D., McMorris, F. A., and Ruddle, F. H., Glysosphingolipids of clonal lines of mouse neuroblastoma and neuroblastoma x L-cell hybrids J. Biol. Chem. 248: 1231–1239, 1973.PubMedGoogle Scholar
  138. 139.
    Basu, M., and Basu, S., Enzymatic synthesis of a tetraglycosylceramide by a galactosyltransferase from rabbit bone marrow, J. Biol. Chem. 247: 1489–1495, 1972.PubMedGoogle Scholar
  139. 140.
    Sarliève, L. L., Neskovic, N. M., Freysz, L., Mandel, P., and Rebel, G., Ceramide galactosyltransferase and cerebroside sulphotransferase in chicken brain cellular fractions and glial and neuronal cells in culture, Life Sci. 18: 251–269, 1976.PubMedCrossRefGoogle Scholar
  140. 141.
    Schnebli, H. P., and Burger, M. M., Selective inhibition of growth of transformed cells by protease inhibitors, Proc. Natl. Acad. Sci. U.S.A. 69: 3825–2827, 1972.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 142.
    Wachsman, J. T., and Biedler, J. L., Fibrinolytic activity associated with human neuroblastoma cells, Exp. Cell Res. 86: 264–268, 1974.PubMedCrossRefGoogle Scholar
  142. 143.
    Laug, W. E., Jones, P. A., Nye, C. A., and Benedict, W. F., The effect of cyclic AMP and prostaglandins on the fibrinolytic activity of mouse neuroblastoma cells, Biochem. Biophys. Res. Commun. 68: 114–119, 1976.PubMedCrossRefGoogle Scholar
  143. 144.
    Prasad, K. N., Kumar, S., Gilmer, K., and Vernadakis, A., Cyclic AMP-induced differentiated neuroblastoma cells: Changes in total nucleic acid and protein contents, Biochem. Biophys. Res. Commun. 50: 973–977, 1973.PubMedCrossRefGoogle Scholar
  144. 145.
    Zucco, F., Persico, M., Felsani, A., Metafora, S., and Augusti-Tocco, G., Regulation of protein synthesis at the translational level in neuroblastoma cells. Proc. Natl. Acad. Sci. U.S.A. 72: 2289–2293, 1975.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 146.
    Augusti-Tocco, G., Casola, L., and Romano, M., RNA metabolism in neuroblastoma cultures. II. Synthesis of nonribosomal RNA, Cell Differ. 3: 313–320, 1974.PubMedCrossRefGoogle Scholar
  146. 147.
    Casola, L., Romano, M., and Dimatteo, G., Augusti-Tocco, G., and Estenoz, M., RNA metabolism in neuroblastoma cultures. I. Ribosomal RNA, Dev. Biol. 41: 371–379, 1974.PubMedCrossRefGoogle Scholar
  147. 148.
    Judes, C., Sensenbrenner, M., Jacob, M., and Mandel, P., Differentiation of chick embryo cerebral hemispheres. I. Incorporation of tritiated uridine into the acid-soluble nucleotide pool and into total RNA in vitro, Brain Res. 51: 241–251, 1974.CrossRefGoogle Scholar
  148. 149.
    Judes, C., and Jacob, M., Differentiation of chick embryo cerebral hemispheres. II. Incorporation of 3H-uridine into 2S, S, 18S, 5S and 4S RNA, Brain Res. 51: 253267, 1973.Google Scholar
  149. 150.
    Lim, R., and Mitsunobu, K., Effect of dibutyryl cyclic AMP in nucleic acid and protein synthesis in neuronal and glial tumor cells, Life Sci. 11: 1063–1070, 1972.CrossRefGoogle Scholar
  150. 151.
    Glazer, R. I., and Schneider, F. H., Effect of adenosine 3’:5’-monophosphate and related agents on ribonucleic acid synthesis and morphological differentiation in mouse neuroblastoma cells in culture, J. Biol. Chem. 250: 2745–2749, 1975.PubMedGoogle Scholar
  151. 152.
    Bondy, S. C., Prasad, K. N., and Purdy, J. L., Neuroblastoma: Drug-induced differentiation increases proportion of cytoplasmic RNA that contains polyadenylic acid, Science 186: 359–361, 1974.PubMedCrossRefGoogle Scholar
  152. 153.
    Prasad, K. N., Bondy, S. C., and Purdy, J. L., Polyadenylic acid containing cytoplasmic RNA increases in adenosine 3’,5’-cyclic monophosphate-induced “differentiated” neuroblastoma cells in culture, Exp. Cell Res. 94: 388–394, 1975.CrossRefGoogle Scholar
  153. 154.
    Sarkar, P. K., Goldman, B., and Moscona, A. A., Involvement of poly-A in selective gene expression: Suppression of enzyme induction in neural retina by inhibitors of poly-A synthesis, Biochem. Biophys. Res. Commun. 50: 308–315, 1973.PubMedCrossRefGoogle Scholar
  154. 155.
    Prasad, K. N., and Sinha, P. K., Effect of sodium butyrate on mammalian cells in culture. A review, In Vitro, 12: 125–132, 1975.CrossRefGoogle Scholar
  155. 156.
    Weber, G., The molecular correlation concept of neoplasia and the cyclic AMP system, in: The Role of Cyclic Nucleotides in Carcinogenesis (J. Schultz and H. G. Gratzner, eds.), pp. 57–94, Academic Press, New York, 1973.Google Scholar
  156. 157.
    Kernell, A. M., Bolund, L., and Ringertz, N. R., Chromatin changes during erythropoiesis, Exp. Cell Res. 65: 1–6, 1971.PubMedCrossRefGoogle Scholar
  157. 158.
    Littauer, U. Z., Schmitt, H., and Gozes, T., Properties and synthesis of tubulin in neuroblastoma cells, J. Natl. Cancer Inst. 57: 647–651, 1976.PubMedCrossRefGoogle Scholar
  158. 159.
    Balhorn, R., Bordwell, J., Sellers, L., Granner, D., and Chalkley, R., Histone phosphorylation and DNA synthesis are linked in synchronous cultures of HTC cells, Biochern. Biophys. Res. Commun. 46: 1326–1333, 1972.CrossRefGoogle Scholar
  159. 160.
    Gurley, L. R., Walters, R. A., and Tobey, R. A., The metabolism of histone fractions. IV. Synthesis of histones during the G1-phase of the mammalian life cycle, Arch. Biochem. Biophys. 148: 633–641, 1972.CrossRefPubMedGoogle Scholar
  160. 161.
    Gurley, L. R., Walters, R. A., and Tobey, R. A., Cell cyclic-specific changes in histone phosphorylation associated with cell proliferation and chromosome condensation, J. Cell Biol. 60: 356–364, 1974.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 162.
    Krause, M. O., and Masi, B. S., Histones from exponential and stationary L-cells. Evidence for metabolic heterogeneity of histone fractions retained after isolation of nuclei, Arch. Biochem. Biophys. 164: 179–184, 1974.CrossRefPubMedGoogle Scholar
  162. 163.
    Burdman, J. A., The relationship between DNA synthesis and the synthesis of nuclear proteins in rat brain during development, J. Neurochem. 19: 1459–1469, 1972.PubMedCrossRefGoogle Scholar
  163. 164.
    Fujitani, H., and Holoubek, V., Nonhistone nuclear proteins of rat brain, J. Neurochem. 23: 1215–1224, 1974.CrossRefPubMedGoogle Scholar
  164. 165.
    Olpe, H. R., Van Hahn, H. P., and Honegger, C. G., The non-histone protein pattern of rat brain during ontogenesis, Experientia 29: 665–666, 1972.CrossRefGoogle Scholar
  165. 166.
    Elgin, S. C. R., Boyd, J. B., Hood, L. E., Wray, W., and Wu, F. C., A prologue to the study of the nonhistone chromosomal proteins, Cold Spring Harbor Symp. Quant. Biol. 38: 821–833, 1973.CrossRefGoogle Scholar
  166. 167.
    Zornetzer, M. S., and Stein, G. S., Gene expression in mouse neuroblastoma cells: Properties of the genome, Proc. Natl. Acad. Sci. U.S.A. 72: 3119–3123, 1975.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 168.
    Olmsted, J. B., Carlson, K., Klebe, R., Ruddle, F., and Rosenbaum, J., Isolation of microtuhule protein from cultured mouse neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 65: 129–136, 1970.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 169.
    Solomon, F., Monard, D., and Rentsch, M., Stabilization of colchicine-binding activity of neuroblastoma, J. Mol. Biol. 78: 569–573, 1973.PubMedCrossRefGoogle Scholar
  169. 170.
    Wiche, G., Zomzely-Neurath, C., and Blume, A. J., In vitro synthesis of mouse neuroblastoma tubulin, Proc. Natl. Acad. Sci. U.S.A. 71: 1460–1450, 1974.CrossRefGoogle Scholar
  170. 171.
    Littauer, U. Z., Schmitt, H., and Gozes, T., Properties and synthesis of tubulin in neuroblastoma cells, Natl. Cancer Inst. 57: 647–651, 1976.CrossRefGoogle Scholar
  171. 172.
    Miller, C., and Kuehl, W. M., Isolation and characterization of myosin from cloned rat glioma cells and mouse neuroblastoma cells, Brain Res. 108: 115–124, 1976.PubMedCrossRefGoogle Scholar
  172. 173.
    Burton, P. R., and Kirkland, W. L., Actin detected in mouse neuroblastoma cells by binding of heavy meromyosin, Nature (London) New Biol. 239: 244–246, 1972.CrossRefGoogle Scholar
  173. 174.
    Lessard, J. L., Goldblatt, D., Rein, D., and Carlton, D., Localization of actin in neuroblastoma cells by immunofluorescence, J. Cell Biol. 70: 150a, 1976.Google Scholar
  174. 175.
    Augusti–Tocco, G., Casola, L., and Grasso, A., Neuroblastoma cells and 14–3–2. A brain specific protein, Cell Differ. 2: 157 – 161, 1973.PubMedCrossRefGoogle Scholar
  175. 176.
    Penit, J., Huot, J., and Jard, S., Neuroblastoma cell adenylate cyclase: Direct activation by adenosine and prostaglandins, J. Neurochem. 26: 265–273, 1976.PubMedCrossRefGoogle Scholar
  176. 177.
    Blume, A. J., and Foster- C. J., Mouse neuroblastoma cell adenylate cyclase: Regulation by 2-chloroadenosine, prostaglandin E, and the cations Mgt+, Ca2+ and Mn2’, J. Neurochem. 26: 305–311, 1976.PubMedCrossRefGoogle Scholar
  177. 178.
    Blume, A. J., and Foster, C. J., Mouse neuroblastoma adenylate cyclase. Adenosine and adenosine analogues as potent effectors of adenylate cyclase activity, J. Biol. Chem. 250: 5003–5008, 1975.PubMedGoogle Scholar
  178. 179.
    Prasad, K. N., Gilmer, K. N., and Sahu, S. K., Demonstration of acetylcholine-sensitive adenyl cyclase in malignant neuroblastoma cells in culture, Nature (London) 249: 765–767, 1974.CrossRefGoogle Scholar
  179. 180.
    Blume, A. J., and Foster, C. J., Neuroblastoma adenylate cyclase. Role of 2-chloroadenosine, prostaglandin E,, and guanine nucleotides in regulation of activity, J. Biol. Chem. 251: 3399–3404, 1976.PubMedGoogle Scholar
  180. 181.
    Levey, G. S., Solubilization of myocardial adenyl cyclase, Biochem. Biophys. Res. Commun. 38: 86–92, 1970.PubMedCrossRefGoogle Scholar
  181. 182.
    DeHaen, C., A new kinetic analysis of the effects of hormones and fluoride ion, J. Biol. Chem. 249: 2756–2762, 1974.Google Scholar
  182. 183.
    Harris, A. J., and Dennis, M. J., Acetylcholine sensitivity and distribution on mouse neuroblastoma cells, Science 167: 1253–1255, 1970.PubMedCrossRefGoogle Scholar
  183. 184.
    Gilman, A. G., and Nirenberg, M. W.- Regulation of adenosine 3’,5’-cyclic monophosphate metabolism in cultured neuroblastoma cells, Nature (London) 234: 356–357, 1971.CrossRefGoogle Scholar
  184. 185.
    Blume, A. J., Dalton, C., and Sheppard, H., Adenosine-mediated elevation of cyclic 3’:5’-adenosine monophosphate concentrations in cultured mouse neuro-blastoma cells, Proc. Natl. Acad. Sci. U.S.A. 70: 3099–3102, 1973.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 186.
    Prasad, K. N., Kumar, S., Becker, G., and Sahu, S. K., The role of cyclic nucleotides in differentiation of neuroblastoma cells in culture, in: Cyclic Nucleotides in Diseases (B. Weiss, ed), pp. 45–66, University Park Press, Baltimore, 1975.Google Scholar
  186. 187.
    Sahu, S. K., and Prasad, K. N., Effect of neurotransmitters and prostaglandin E, on cyclic AMP levels in various clones of neuroblastoma cells in culture, J. Neurochem. 24: 1267–1269, 1975.PubMedCrossRefGoogle Scholar
  187. 188.
    Schubert, D., Tarikas, H., and Lacorbiere, M., Neurotransmitter regulation of adenosine 3’,5’-monophosphate on clonal nerve, glia and muscle cell lines, Science 192: 471–472, 1976.PubMedCrossRefGoogle Scholar
  188. 189.
    Blume, A. J., Foster, C. J., and Karp, G., Acetylcholine inhibition of adenosine and prostaglandin E, stimulants of mouse neuroblastoma cAMP levels. Presented at the fifth meeting of the American Society for Neurochemistry. New Orleans, p. 150, 1974.Google Scholar
  189. 190.
    Traber, J., Fischer, K., Latzin, S., and Hamprecht, B., Morphine antagonises action of prostaglandin in neuroblastoma and neuroblastoma x glioma hybrid cells, Nature (London) 253: 120–122, 1975.CrossRefGoogle Scholar
  190. 191.
    Prasad, K. N., and Kumar, S., Role of cyclic AMP in differentiation of human neuroblastoma cells in culture, Cancer 36: 1338–1343, 1975.CrossRefPubMedGoogle Scholar
  191. 192.
    Prasad, K. N., Sahu, S. K., and Sinha, P. K., Cyclic nucleotides in the regulation of expression of differentiated functions in neuroblastoma cells, J. Natl. Cancer Inst. 57: 619–631, 1976.CrossRefPubMedGoogle Scholar
  192. 193.
    Matsuzawa, H., and Nirenberg, M., Receptor-mediated shifts in cGMP and cAMP levels in neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 72: 3472–3476, 1975.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 194.
    Prasad, K. N., Becker, G., and Tripathy, K., Differences and similarities between guanosine 3’,5’-cyclic monophosphate phosphodiesterase and adenosine 3’,5’-cyclic monophosphate phosphodiesterase activities in neuroblastoma cells in culture, Proc. Soc. Exp. Biol. Med. 149: 757–762, 1975.PubMedCrossRefGoogle Scholar
  194. 195.
    Sinha, P. K., and Prasad, K. N., A further study on the regulation of cyclic nucleotide phosphodiesterase activity in neuroblastoma cells. Effect of growth, in Vitro (in press).Google Scholar
  195. 196.
    Cheung, W. Y., Cyclic nucleotide phosphodiesterase, In: Role of Cyclic AMP in Cell Function (P. Greengard and E. Costa, eds.), pp. 51–65, Raven Press, New York, 1970.Google Scholar
  196. 197.
    Prasad, K. N., and Kumar, S., Cyclic 3’,5’-AMP phosphodiesterase activity during cyclic AMP-induced differentiation of neuroblastoma cells in culture, Proc. Soc. Exp. Biol. Med. 142: 406–409, 1973.CrossRefPubMedGoogle Scholar
  197. 198.
    Kumar, S., Becker, G., and Prasad, K. N., Cyclic adenosine 3’:5’-monophosphate phosphodiesterase activity in malignant and cyclic adenosine 3’,5’monophosphate-induced “differentiated” neuroblastoma cells, Cancer Res. 35: 82–87, 1975.PubMedGoogle Scholar
  198. 199.
    Gill, G. N., and Garren, L. D., A cyclic-3’,5’-adenosine monophosphate dependent protein kinase from the adrenal cortex: comparison with a cyclic AMP binding protein, Biochem. Biophys. Res. Commun. 39: 335–343, 1970.PubMedCrossRefGoogle Scholar
  199. 200.
    Tao, M., Salas, M. L., and Lipmann, F., Mechanism of activation by adenosine 3’:5’-cyclic monophosphate of a protein phosphokinase from rabbit reticulocytes, Proc. Natl. Acad. Sci. U.S.A. 67: 408–414, 1970.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 201.
    Reimann, E. M., Brostrom, C. O., Corbin, J. D., King, C. A., and Krebs, E. G., Separation of regulatory and catalytic subunits of the cyclic 3’,5’-adenosine monophosphate-dependent protein kinase(s) of rabbit skeletal muscle, Biochem. Biophys. Res. Commun. 42: 187–194, 1971.PubMedCrossRefGoogle Scholar
  201. 202.
    Kumon, A., Yamamura, H., and Nishizuka, Y., Mode of action of adenosine 3’,5’-cyclic phosphate on protein kinase from rat liver, Biochem. Biophys. Res. Commun. 41: 1290–1297, 1970.PubMedCrossRefGoogle Scholar
  202. 203.
    Prasad, K. N., Sinha, P. K., Sahu, S. K., and Brown, J. L., Binding of cyclic nucletoides with soluble proteins increases in differentiated neuroblastoma cells in culture, Biochem. Biophys. Res. Commun. 66: 131–138, 1975.CrossRefPubMedGoogle Scholar
  203. 204.
    Prasad, K. N., Sinha, P. K., Sahu, S. K., and Brown, J. L., Binding of cyclic nucleotides with proteins in malignant and adenosine 3’:5’-cyclic monophosphate-induced “differentiated” neuroblastoma cells in culture, Cancer Res. 36: 2290–2296, 1976.PubMedGoogle Scholar
  204. 205.
    Prashad, N., and Rosenberg, R. N., Phosphorylation of proteins by dibutyryl CAMP during differentiation of mouse neuroblastoma cells, Presented at the 8th annual meeting of the American Society for Neurochemistry, Denver, Colorado, March 13–18, 1977.Google Scholar
  205. 206.
    Butcher, R. W., and Sutherland, E. W., Adenosine 3’,5’-phosphate in biological materials. Purification and properties of cyclic 3’,5’-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3’,5’-phosphate in human urine, J. Biol. Chem. 237: 1244–1255, 1962.PubMedGoogle Scholar
  206. 207.
    Ebadi, M. S., Weiss, B., and Costa, E., Distribution of cyclic adenosine monophosphate in rat brain, Arch. Neurol. 24: 353–357, 1971.PubMedCrossRefGoogle Scholar
  207. 208.
    Sutherland, E. W., Rall, T. W., and Menon, T., Adenylate cyclase. I. distribution, preparation, and properties, J. Biol. Chem. 237: 1220–1227, 1962.PubMedGoogle Scholar
  208. 209.
    Prasad, K. N., Fogleman, D., Gaschler, M., Sinha, P. K., and Brown, J. L., Cyclic nucleotide-dependent protein kinase activity in malignant and cyclic AMP-induced “differentiated” neuroblastoma cells in culture, Biochem. Biophys. Res. Commun. 68: 1248–1255, 1976.PubMedCrossRefGoogle Scholar
  209. 210.
    Ehrlich, Y. H., and Routtenberg, A., Cyclic AMP regulates phosphorylation of three protein components of rat cerebral cortex membranes for thirty minutes, FEBS Lett. 45: 237–243, 1974.PubMedCrossRefGoogle Scholar
  210. 211.
    Seite, R., Leonetti, J., Luciani-Vuillet, J., and Vio, M., Cyclic AMP and ultrastructural organization of the nerve cell nucleus; stimulation of nuclear microtubules and microfilaments assembly in sympathetic neurons, Brain Res. 124: 41–51, 1977.PubMedCrossRefGoogle Scholar
  211. 212.
    Prasad, K. N., Abnormal regulation of cyclic AMP phosphodiesterase: A hypothesis for the development of cancer of nerve cells, Differentiation 2: 367–369, 1974.PubMedCrossRefGoogle Scholar
  212. 213.
    Knapp, S., and Mandell, A. J., Serotonin biosynthetic capacity of mouse C-1300 neuroblastoma cells in culture, Brain Res. 66: 547–551, 1974.CrossRefGoogle Scholar
  213. 214.
    Prasad, K. N., Sinha, P. K., Ramanuzam, M., and Sakamoto, A., Sodium ascorbate potentiates the growth inhibitory effect of certain agents on neuroblastoma cells in culture, Proc. Natl. Acad. Sci. U.S.A. 76: 829–832, 1979.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 215.
    Prasad, K. N., and Sinha, P. K., Regulation of differentiated functions and malignancy in neuroblastoma cells in culture, in: Differentiation and Neoplasia (G. F. Saunders, ed.), pp. 111–141, M. D. Anderson Hospital, Houston, 1978.Google Scholar
  215. 216.
    Orr, C. W. M., Studies on ascorbic acid. Factors influencing the ascorbatemediated inhibition of catalase, Biochemistry 6: 2995–3001.Google Scholar
  216. 217.
    Helstroem, I. E., Helstroem, K. D., Pierce, G. E., and Bill, A. H., Demonstration of cell-bound and humoral immunity against neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 60: 1231–1238, 1968.CrossRefGoogle Scholar
  217. 218.
    Imashuku, S., Todo, S., Amano, T., Mizukawa, K., Sugimoto, T., and Kusunoki, T., Cyclic AMP in neuroblastoma, glanglioneuroma and sympathetic ganglia, Experientia 33: 1507, 1977.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Kedar N. Prasad
    • 1
  1. 1.University of Colorado Medical CenterDenverUSA

Personalised recommendations