Skip to main content

Chronobiological Effects of L-Tryptophan in Humans: Influence on Melatonin Secretion

  • Chapter
Kynurenine and Serotonin Pathways

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 294))

Abstract

Melatonin synthesis in the pineal organ results from acetylation of serotonin (5-HT) by arylalkylamine-N-acetyltransferase (NAT) and subsequent conversion of N-acetylserotonin to melatonin by hydroxyindole-O-methyltrans-ferase. A substantial amount of data derived from animal experiments indicates that the circadian rhythm of melatonin synthesis with an about tenfold increase in the dark phase is closely associated with the oscillation in the activity of pineal NAT, the rate-limiting enzyme of melatonin production. The major biological event controlling NAT and thus melatonin synthesis is the β-adrenoreceptor-linked increase in pineal cAMP production. However, the precise mechanism by which the noradrenergie (NE) input from sympathetic nerve endings controls the circadian melatonin rhythm is a matter of debate (circadian changes in NE input, β-adrenoreceptor density, uncoupling of the receptor after agonist interaction, synergism with α1-adrenoreceptors, etc.; for summary, see Klein et al., 1987; Cardinali et al., 1987; Gonzalez-Brito and Reiter, 1987). In addition to the predominant role of mechanisms controlling NAT activity, many data are compatible with the suggestion that the availability of serotonin may be involved in regulating melatonin synthesis (Wurtman and Ozaki, 1978; Chan and Ebadi, 1981; for summary, see Ebadi, 1984). Recently, Demisch et al. (1986, 1987) reported that the administration of the selective 5-HT reuptake inhibitor fluvoxamine at night led to significant increases of nocturnal melatonin concentrations in the plasma of healthy volunteers and a delayed decline of plasma melatonin in early morning hours. This observation led to the hypothesis that the availability of serotonin as a substrate of NAT may be of relevance in the process of terminating the synthesis of melatonin. This study was designed to examine this hypothesis by elucidating the influence of L-tryptophan on melatonin plasma levels in healthy subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cardinali, D.P., Vacas, M.I., and Rosenstein, R.E., 1987, Pineal: a multieffector organ, in: “Fundamentals and Clinics in Pineal Research”, Trentini, G.P., De Gaetani, C., and Pevet, P., eds., Raven Press, New York, pp. 137–150.

    Google Scholar 

  • Chan, A., and Ebadi, M., 1981, Reciprocal relationship between the concentration of serotonin and the activity of serotonin N-acetyltransferase in rat pineal glands in culture, Endocrin. Res. Commun., 8: 25–44.

    Article  CAS  Google Scholar 

  • Demisch, K., Demisch, L., Bochnik, H.J., Nickelsen, T., Althoff, P.H., Schöffling, K., and Rieth, R., 1986, Melatonin and cortisol increase after fluvoxamine, Br. J. Clin. Pharmacol., 22: 620–622.

    PubMed  CAS  Google Scholar 

  • Demisch, K., Demisch, L., Nickelsen, T., and Rieth, R., 1987, The influence of acute and subchronic administration of various antidepressants on early morning melatonin plasma levels in healthy subjects: increases following fluvoxamine, J. Neural Transm., 68: 257–270.

    Article  PubMed  CAS  Google Scholar 

  • Ebadi, M., 1984, Regulation of the synthesis of melatonin and its significance to neuroendocrinology, in: “The Pineal Gland”, Reiter, R.J., ed., Raven, New York, pp. 1–38.

    Google Scholar 

  • Fraser, S., Cowen, P., Franklin, M., Franey, C., and Arendt, J., 1983, Direct radioimmunoassay for melatonin in plasma, Clin. Chem., 28: 396–397.

    Google Scholar 

  • Gonzalez-Brito, A., Reiter, R.J., 1987, Mammalian pineal beta-adrenergic receptors: their regulation and physiological significance, in: “Fundamentals and Clinics in Pineal Research”, Trentini, G.P., De Gaetani, C, and Pevet, P., eds., Raven Press, New York, pp. 121–124.

    Google Scholar 

  • Klein, D.C., Weiler, A.L., Sudgen, A.L., Sudgen, D., Vanecek, J., Chik, C.L., and Ho, A.K., 1987, Integration of multiple receptor mechanisms regulating pineal cyclic nucleotides, in: “Fundamentals and Clinics in Pineal Research”, Trentini, G.P., De Gaetani, C., and Pevet, P., eds., Raven, New York, pp. 111–120.

    Google Scholar 

  • Wurtman, R.J., and Ozaki, Y., 1978, Physiological control of melatonin synthesis and secretion: mechanisms generating rhythms in melatonin, meth-oxytryptophol, and arginine vasotocin levels and effects on the pineal of endogenous catecholamines, the estrous cycles, and environmental lighting, J. Neural Transm., Suppl., 13: 59–70.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Sielaff, T., Demisch, L., Gebhart, P., Blumhofer, A., Khazai, A., Lemmer, B. (1991). Chronobiological Effects of L-Tryptophan in Humans: Influence on Melatonin Secretion. In: Schwarcz, R., Young, S.N., Brown, R.R. (eds) Kynurenine and Serotonin Pathways. Advances in Experimental Medicine and Biology, vol 294. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5952-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5952-4_51

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5954-8

  • Online ISBN: 978-1-4684-5952-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics