Molecular Aspects of the Relationship of Transmissible Gastroenteritis Virus (TGEV) with Porcine Respiratory Coronavirus (PRCV)

  • P. Britton
  • D. J. Garwes
  • K. Page
  • F. Stewart
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)


Transmissible gastroenteritis, caused by a Coronavirus (TGEV), has been recognised as a viral disease since 1946 when the virus was first isolated by Doyle and Hutchings (1). TGEV has been shown to cause diarrhoea in pigs of all ages but has a high mortality, often 100%, in neonatal piglets. The TGEV virion, like all coronaviruses, contains an envelope, whose lipids are derived from the host cell endoplasmic reticulum, a single-stranded RNA genome, of positive polarity, and three structural proteins. The virion proteins are: a surface glycoprotein (peplomer) of Mr 200000, a glycosylated integral membrane protein observed as a series of polypeptides of Mr 28000–31000 and a basic phosphorylated protein (nucleoprotein) of Mr 47000 associated with the viral genomic RNA (2). Like all the coronaviruses the TGEV proteins are expressed from a series of subgenomic mRNA species, six in the case of TGEV (3), which have common 3′ ends but different 5′ extensions. The region of each mRNA responsible for the expression of a protein appears to correspond to the 5′-terminal region, often referred to as the ‘unique’ region, that is absent from the preceding smaller species. The TGEV genome encompassing the structural protein genes has been cloned and sequenced from a virulent British isolate, FS772/70 (4, 5, 6, 7, 8 and unpublished results), and from the avirulent Purdue strain (9, 10, 11, 12, 13, 14). This has led to the identification of five other potential genes, one of which appears to be the polymerase gene (8), another that appears to be located in the host cell nucleus and not in TGEV virions (8, 15) and three others whose products have yet to be identified in TGEV infected cells.


Integral Membrane Protein Porcine Epidemic Diarrhoea Virus Feline Infectious Peritonitis Neonatal Piglet Transmissible Gastroenteritis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. P. Doyle and L. M. Hutchings, A transmissible gastroenteritis in pigs, J. Am. Vet. Med. Assoc., 108:257–259 (1946).PubMedGoogle Scholar
  2. 2.
    D. J. Garwes and D. H. Pocock, The polypeptide structure of transmissible gastroenteritis virus, J. Gen. Virol., 29:25–34 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    P. Britton, D. J. Garwes, G. C. Millson, K. Page, L. Bountiff, F. Stewart and J. Walmsley, Towards a genetically-engineered vaccine against porcine transmissible gastroenteritis virus.In: Biomolecular Engineering in the European Community. Final Report, E. Magnien, ed., Martinus Nijhoff, The Netherlands (1986).Google Scholar
  4. 4.
    P. Britton, D. J. Garwes, K. Page and J. Walmsley, Expression of porcine transmissible gastroenteritis virus genes in E. colias galactosidase chimaeric proteins. Adv. Exp. Med. Biol., 218:55–64 (1987).PubMedGoogle Scholar
  5. 5.
    P. Britton, R. S. Carmenes, K. W. Page, D. J. Garwes and F. Parra, Sequence of the nucleoprotein from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae, Mol. Microbiol., 2:89–99 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Britton, R. s. Carmenes, K. W. Page and D. J. Garwes, The integral membrane protein from a virulent isolate of transmissible gastroenteritis virus: Molecular characterization, sequence and expression in Escherichia coli, Mol. Microbiol., 2: 497–505 (1988).Google Scholar
  7. 7.
    P. Britton, C. Lopez Otin, J. Martin Alonso and F. Parra, Sequence of the coding regions from the 3.0 kb and 3.9 kb mRNA subgenomic species from a virulent isolate of transmssible gastroenteritis virus, Arch. Virol., 105:(in press) (1989).Google Scholar
  8. 8.
    P. Britton, K. W. Page, D. J. Pulford, D. J. Garwes, K. Mawditt, F. Stewart, F. Parra, C. Lopez Otin, J. Martin Alonso and R. S. Carmenes, Genomic organisation of a virulent isolate of porcine transmissible gastroenteritis virus, (This book).Google Scholar
  9. 9.
    P. A. Kapke and D. A. Brian, Sequence analysis of the porcine transmissible gastroenteritis Coronavirus nucleocapsid protein gene, Virology, 151:41–49 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    P. A. Kapke, F. Y. C. Tung, D. A. Brian, R. D. Woods and R. Wesley, Nucleotide sequence of the porcine transmissible gastroenteritis Coronavirus matrix protein, Adv. Exp. Med. Biol., 218: 117–122 (1987).PubMedGoogle Scholar
  11. 11.
    H. Laude, D. Rasschaert and J. C. Huert, Sequence and N-terminal processing of the transmembrane protein E1 of the Coronavirus transmissible gastroenteritis virus, J. Gen. Virol., 68:1687–1693 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    D. Rasschaert, B. Delmas, B. Charley, J. Grossclaude, J. Gelfi and H. Laude, Surface glycoproteins of transmissible gastroenteritis virus: functions and gene sequence, Adv. Exp. Med. Biol., 218: 109–116 (1987).PubMedGoogle Scholar
  13. 13.
    D. Rasschaert and H. Laude, The predicted structure of the peplomer protein E2 of the porcine Coronavirus transmissible gastroenteritis virus, J. Gen. Virol., 68:1883–1890 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    D. Rasschaert, J. Gelfi and H. Laude, Enteric Coronavirus TGEV: partial sequence of the genomic RNA, its organisation and expression. Biochimie, 69:591–600 (1987).Google Scholar
  15. 15.
    D. J. Garwes, F. Stewart and P. Britton, The polypeptide of M 14000 of porcine transmissible gastroenteritis virus: Gene assignment and intracellular location, J. Gen. Virol., 70:(In press) (1989).Google Scholar
  16. 16.
    M. B. Pensaert, P. E. Callebaut and J. Vergote, Isolation of a porcine respiratory non-enteric Coronavirus related to transmissible gastroenteritis. Vet. Q., 8:257–260 (1986).Google Scholar
  17. 17.
    I. Brown and S. Cartwright, New porcine Coronavirus? Vet. Rec., 119:282–283 (1986).Google Scholar
  18. 18.
    N. R. Underdahl, C. A. Mebus, E. L. Stair, M. B. Rhodes, L. D. McGill and M. J. Twiehaus, Isolation of transmissible gastroenteritis virus from lungs of market-weight swine, Am. J. Vet. Res., 35:1209–1216 (1974).PubMedGoogle Scholar
  19. 19.
    D. J. Garwes, F. Stewart, S. F. Cartwright and I. Brown, Differentiation of porcine Coronavirus from transmissible gastroenteritis virus, Vet. Rec., 122:86–87 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    P. Callebaut, I. Correa, M. Pensaert, G. Jimenez and L. Enjuanes, Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory Coronavirus, J. Gen. Virol., 69:1725–1730 (1988).PubMedCrossRefGoogle Scholar
  21. 21.
    M. B. Pensaert, Transmissible gastroenteritis virus (Respiratory variant), In: Virus Infections of Vertebrates, Vol. 2. Virus Infections of Porcines, M. B. Pensaert, ed., Elsevier, Amsterdam, Oxford, New York and Tokyo (1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • P. Britton
    • 1
  • D. J. Garwes
    • 1
  • K. Page
    • 1
  • F. Stewart
    • 1
  1. 1.Compton LaboratoryAFRC Institute for Animal HealthCompton, Newbury, BerkshireUK

Personalised recommendations