Background Paper Transcription and Replication of Coronavirus RNA: A 1989 Update

  • Michael M. C. Lai
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)


The genomic RNA of coronaviruses has two unique features. Firstly, it is one of the largest stable RNAs known to exist in nature and is unquestionably the largest viral genomic RNA. The complete sequence of avian infectious bronchitis virus (IBV) RNA shows that its size is 27.6 kilobases (kb) (Boursnell et al., 1987). Although the complete sequences of other Coronavirus genomic RNAs are not yet available, preliminary data from several laboratories indicate that the genomic RNA of mouse hepatitis virus (MHV) is as long as 32 kb (Shieh and Lai, unpublished observations). The large size of these RNAs poses a theoretical quandary for the replication of Coronavirus RNA, considering the high error frequency of RNA-dependent RNA synthesis observed in some systems (Holland et al., 1982; Steinhauer and Holland, 1986). How does Coronavirus RNA replicate faithfully despite the high error frequency of RNA synthesis? It is possible that a proof-reading mechanism operates to correct unavoidable mistakes which are expect d to occur in almost every RNA molecule of this size. Secondly, Coronavirus RNA contains a leader sequence (approximately 72 nucleotides) which is repeated at the 5′-end of every subgenomic mRNA species. This structural organization appears to be similar to that of most of eukaryotic mRNAs which contain leader sequences derived by RNA splicing. Yet the Coronavirus RNA genome does not have consensus splicing signals and the virus replicates exclusively in the cytoplasm (Wilhelmson et al., 1981; Brayton et al., 1981), where there is no conventional RNA splicing machinery. Furthermore, UV transcriptional mapping studies suggest that Coronavirus mRNA species are transcribed independently (Jacobs et al., 1981), instead of being derived by cleavage of a precursor RNA. Thus, a new transcriptional mechanism must operate to transcribe Coronavirus mRNAs.


Infectious Bronchitis Virus Mouse Hepatitis Virus Transcriptional Initiation Site Murine Hepatitis Virus Avian Infectious Bronchitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baric, R. S., Nelson, G. W., Fleming, J. O., Deans, R. J., Keck, J. G., Casteel, N., and Stohlman, S. A., 1988, Interactions between Coronavirus nucleocapsid protein and viral RNAS: implications for viral transcription, J. Virol.. 62:4280.PubMedGoogle Scholar
  2. Baric, R. S., Shieh, C.-K., Stohlman, S. A., and Lai, M. M. C, 1987, Analysis of intracellular small RNAS of mouse hepatitis virus: evidence for discontinuous transcription, Virology, 156:342.PubMedCrossRefGoogle Scholar
  3. Baric, R. S., Stohlman, S. A., and Lai, M. M. C., 1983, Characterization of replicative intermediate RNA of mouse hepatitis virus: presence of leader RNA sequences on nascent chains, J. Virol., 48:633.PubMedGoogle Scholar
  4. Baric, S. S., Stohlman, S. A., Razavi, M. K., and Lai, M. M. C., 1985, Characterization of leader related small RNAS in coronavirus-infected cells: further evidence for leader-primed mechanism of transcription, Virus Res., 3:19.PubMedCrossRefGoogle Scholar
  5. Boursnell, M. E. G., Brown, T. D. K., Foulds, I. J., Green, P. F., Tomley, F. M., andGoogle Scholar
  6. Binns, M. M., 1987, Completion of the sequence of the genome of the Coronavirus avian infectious bronchitis virus, J. Gen. Virol., 68:57.PubMedCrossRefGoogle Scholar
  7. Brayton, P. R., Ganges, R. G., and Stohlman, S. A., 1981, Host cell nuclear function and murine hepatitis virus replication, J. Gen. Virol., 56:457.PubMedCrossRefGoogle Scholar
  8. Brayton, P. R., Lai, M. M. C., Patton, C. D., and Stohlman, S. A, 1982, Characterization of two RNA polymerase activities induced by mouse hepatitis virus, J. Virol., 42:847.PubMedGoogle Scholar
  9. Brayton, P. R., Stohlman, S. A., and Lai, M. M. C, 1984, Further characterization of mouse hepatitis virus RNA-dependent RNA polymerase, Virology. 133: 197.PubMedCrossRefGoogle Scholar
  10. Brierley, I., Boursnell, M. E. G., Binns, M. M., Bilimoria, B., Blok, V. C, Brown, T. D. K., and Inglis, S. C., 1987, An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the Coronavirus IBV, EMBOJ., 6:3779.Google Scholar
  11. Brierley, I., Digard, P., and Inglis, S. C., 1989, Characterization of an efficient Coronavirus ribosomal frame-shifting signal: Requirement for an RNA pseudoknot, Cell, 57:537.PubMedCrossRefGoogle Scholar
  12. Compton, S. R., Rogers, D. B., Holmes, K. V., Fertsch, D., Remenick, J., and McGowan, J. J., 1987, In vitro replication of mouse hepatitis virus strain A59, J. Virol., 61:1814.PubMedGoogle Scholar
  13. Denison, M. R., and Perlman, S., 1986, Translation and processing of mouse hepatitis virus virion RNA in a cell-free system, J. Virol, 60:12.PubMedGoogle Scholar
  14. Dennis, D. E., and Brian, D. A., 1982, RNA-dependent RNA polymerase activity in coronavirus-infected cells, J. Virol. 42:153.PubMedGoogle Scholar
  15. Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., and van de Pol, S., 1982, Rapid evolution of RNA genomes, Science. 215:1577.PubMedCrossRefGoogle Scholar
  16. Jacobs, L., Spaan, W.J.M., Horzinek, M.C. and van der Zeijst, B.A.M., 1981, The synthesis of the subgenomic mRNAS of mouse hepatitis virus is initiated independently: evidence from UV transcriptional mapping, J. Virol, 39:401.PubMedGoogle Scholar
  17. Keck, J. G., Hogue, B. G., Brian, D. A., and Lai, M. M. C, 1988a, Temporal regulation of bovine Coronavirus RNA synthesis. Virus Res9:343.PubMedCrossRefGoogle Scholar
  18. Keck, J. G., Matsushima, G. K., Makino, S., Fleming, J. O., Vannier, D. M., Stohlman, S. A., and Lai, M. M. C., 1988b. In vivo RNA-RNA recombination of Coronavirus in mouse brain, J. Virol, 62: 1810.PubMedGoogle Scholar
  19. Lai, M. M. C., Patton, C. D., and Stohlman, S. A, 1982, Replication of mouse hepatitis virus: negative-stranded RNA and replicative form RNA are of genome length, J. Virol, 44:487.PubMedGoogle Scholar
  20. Lai, M. M. C., 1986, Coronavirus leader-RNA-primed transcription: an alternative mechanism to RNA splicing, BioEssays. 5:257.Google Scholar
  21. Leibowitz, J. L., DeVries, J. R., and Haspel, M. V., 1982, Genetic analysis of murine hepatitis virus strain JHM. J. Virol, 42: 1080.PubMedGoogle Scholar
  22. Leibowitz, J. L., and DeVries, J. R., 1988, Synthesis of virus-specific RNA in permeabilized murine coronavirus-infected cells, Virology 166:66.PubMedCrossRefGoogle Scholar
  23. Makino, S., Taguchi, F., and Fujiwara, K., 1984, Defective interfering particles of mouse hepatitis virus, Virology. 133:9.PubMedCrossRefGoogle Scholar
  24. Makino, S., Keck, J. G., Stohlman, S. A., and Lai, M. M. C., 1986, High-frequency RNA recombination of murine coronaviruses, J. Virol., 57:729.PubMedGoogle Scholar
  25. Makino, S., Stohlman, S. A., and Lai, M. M. C., 1986, Leader sequences of murine Coronavirus mRNAS can be freely reassorted: evidence for the role of free leader RNA in transcription, Proc. Natl. Acad. Sci. USA. 83:4204.PubMedCrossRefGoogle Scholar
  26. Makino, S., Shieh, C.-K., Soe, L.-H., Baker, S. C., and Lai, M. M. C., 1988, Primary structure and translation of a defective interfering RNA of murine Coronavirus, Virology. 166:550.PubMedCrossRefGoogle Scholar
  27. Makino, S., Soe, L. H., Shieh, C.-K., and Lai, M. M. C., 1988, Discontinuous transcription generates heterogeneity at the leader fusion sites of Coronavirus mRNAS, J. Virol., 62:3870.PubMedGoogle Scholar
  28. Makino, S., and Lai, M. M. C., 1989, Evolution of the 5’-end of genomic RNA of murine coronaviruses during passages in vitro. Virology. 169:227.PubMedCrossRefGoogle Scholar
  29. Sawicki, S. G., and Sawicki, D. L., 1986, Coronavirus minus-straind RNA synthesis and effect of cycloheximide on Coronavirus RNA synthesis, J. Virol., 57:328.PubMedGoogle Scholar
  30. Shieh, C.K., Soe, L. H., Makino, S., Chang, M.F., Stohlman, S. A., and Lai, M. M. C., 1987, The 5’-end sequence of the murine Coronavirus genome: implication for multiple fusion sites in leader-primed transcription, Virology. 156:321.PubMedCrossRefGoogle Scholar
  31. Shieh, C.K., Lee, H.-J., Yokomori, K., La Monica, N., Makino, S., and Lai, M. M. C.,1989, Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine Coronavirus RNA genome, J. Virol.. 63: 3729– 3736.PubMedGoogle Scholar
  32. Soe, L. H., Shieh, C.-K., Baker, S. C., Chang, M.-F., and Lai, M. M. C., 1987,Google Scholar
  33. Sequence and translation of the murine Coronavirus 5’-end genomic RNA reveals the N-terminal structure of the putative RNA polymerase. J. Virol, 61: 3968–3976.Google Scholar
  34. Steinhauer, D. A., and Holland, J. J, 1986, Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA, J. Virol57:219.PubMedGoogle Scholar
  35. Wilhelmsen, K. C., Leibowitz, J. L., Bond, C. W., and Robb, J. A., 1981, The replication of murine Coronavirus in enucleated cells, Virology. 110:225–230.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Michael M. C. Lai
    • 1
  1. 1.Department of MicrobiologyUniversity of Southern California School of MedicineLos AngelesUSA

Personalised recommendations