Functional Analysis of the Coronavirus MHV-JHM Surface Glycoproteins in Vaccinia Virus Recombinants

  • M. Pfleiderer
  • E. Routledge
  • S. G. Siddell
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)


Coronavirus MHV-JHM has two surface glycoproteins. The S protein is a heterodimer comprised of two non-covalently bound, subunits of about 90,000 molecular weight (mol.wt.) (S1 and S2) which are derived by proteolytic processing of the 180,000 mol.wt. precursor S. Multimers of the heterodimer assemble together to produce the characteristic peplomer structures at the surface of the virion. The second surface projection is smaller and is comprised of disulphide-linked homodimer(s) of the HE protein. The reduced HE monomer has a mol.wt. of 65,000 (Siddell et al., 1981).


Vaccinia Virus Esterase Activity Specific Monoclonal Antibody Semliki Forest Virus Fusion Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Collins, A.R., Knobler, R.L., Powell, H., and Buchmeier, M.J., 1982, Monoclonal antibodies to Murine Hepatitis Virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology 119:358.PubMedCrossRefGoogle Scholar
  2. de Groot, R.J., Maduro, J., Lenstra, J.A., Horzinek, M.C., and van der Zeijst, B.A., 1987, cDNA cloning and sequence analysis of the gene encoding the peplomer protein of Feline Infectious Peritonitits virus. J. gen. Virol. 68:2639.PubMedCrossRefGoogle Scholar
  3. de Groot, R.J., van Leen, R.W., Dalderup, M.J.H., Vennema, H., Horzinek, M.C., and Spaan, W., 1989, Stabley expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virology, 171:493.PubMedCrossRefGoogle Scholar
  4. Fuerst, T.R., Niles, E.G., Studier, F.W., and Moss, B., 1986, Eukaryotic transient expression system based on recombinant Vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. sci. USA 83:8122.PubMedCrossRefGoogle Scholar
  5. Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H., and Delius, H. (1980a) . Nucleotide sequence of cDNA coding for Semliki Forest Virus membrane gylcoproteins. Nature 288:236.PubMedCrossRefGoogle Scholar
  6. Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H., and Delius, H. (1980b). The capsid protein of Semliki Forest Virus has clusters of basic amino acids and prolines in its amino terminal region. Proc. Natl. Acad. Sci. USA 77:6376.PubMedCrossRefGoogle Scholar
  7. Gubler, U., and Hoffman, B.J., 1983, A simple and very efficient method for generating cDNA libraries, Gene 25:263.PubMedCrossRefGoogle Scholar
  8. Herrler, G., Rott, R., Klenk, H.-D., Müller, H.-P., Shukla, A.-K., Schauer, R., 1985, The receptor destroying enzyme of Influenza C virus is a neuraminate-O-acetlyesterase, EMBO J4:1503.PubMedGoogle Scholar
  9. King, B., Potts, B.J., and Brian, D., 1985, Bovine Coronavirus hemagglutinin protein, Virus Research 2:53.PubMedCrossRefGoogle Scholar
  10. Luytjes, W., Bredenbeek, P.J., Noten, A.F.H., Horzinek, M.C., and Spaan, W., 1988, Sequence of the Mouse Hepatitis Virus A59 mRNA 2: indications for RNA recombination between Corona-viruses and Influenza C virus. Virology 166:415.PubMedCrossRefGoogle Scholar
  11. Luytjes, W., Geerts, D., Posthumus, W., Moloen, R., and Spaan, W., 1989, Amino acid sequence of a conserved neutralizing epitope of murine coronaviruses. J. Virol. 63:1408.PubMedGoogle Scholar
  12. Nakada, S., Craeger, R., Krystal, R., Aaronson, R.P., and Palese, P., 1984, Influenza C virus hemagglutinin: comparison with Influenza A and B virus hemagglutinin. J. Virol. 50:118.PubMedGoogle Scholar
  13. Pfeifer, J.B., and Compans, R.W., 1984, Structure of the Influenza C glycoprotein gene as determined from cloned cDNA. Virus Res. 1:281.PubMedCrossRefGoogle Scholar
  14. Richardson, C.D., and Choppin, P.W., 1983, Oligopeptides that specifically inhibit membrane fusion by paramyxoviruses: studies on the site of action. Virology 131:518.PubMedCrossRefGoogle Scholar
  15. Schmidt, I., Skinner, M.A., and Siddell, S.G., 1987, Nucleotide sequence of the gene encoding the surface projection glycoprotein of the Coronavirus MHV-JHM. J. gen. Virol. 68: 47.PubMedCrossRefGoogle Scholar
  16. Siddell, S.G., Wege, H., Barthel, A., and ter Meulen, V., 1980, Coronavirus JHM: cell free synthesis of structural protein p60. J. Virol. 33:10.PubMedGoogle Scholar
  17. Siddell, S.G., Wege, H., Barthel, A., and ter Meulen, V., 1981, Coronavirus JHM: intracellular protein synthesis. J. gen. Virol. 53:145.PubMedCrossRefGoogle Scholar
  18. Sturman, L.S., Ricard, C., and Holmes, K.V., 1985, Proteolytic cleavage of the E2 glycoprotein of murine Coronavirus: Activation of cell-fusing activity of virions by trypsin treatment and separation of two different 90K cleavage fragments. J. Virol 56:904.PubMedGoogle Scholar
  19. Vlasak, R., Luytjes, W., Spaan, W., and Palese, P., 1988a, Human and bovine Coronaviruses recognize sialic acid-containing receptors similar those of Influenza C virus. Proc. Natl. Acad. Sci. USA 85:4526.PubMedCrossRefGoogle Scholar
  20. Vlasak, R., Juytjes, W., Leider, J., Spaan, W., and Palese, P., 1988b, The E3 protein of bovine Coronavirus is a receptor-destroying enzyme with acetylesterase activity. J. Virol62:4686.PubMedGoogle Scholar
  21. Wege, H., Dörries, R., and Wege, H., 1984, Hybridoma antibodies to the murine Coronavirus JHM: characterization of epitopes on the peplomer protein (E2). J. gen. Virol. 65:1931.PubMedCrossRefGoogle Scholar
  22. Wilson, I.A., Skehel, J.J., and Wiley, D.C., 1981, Structure of the hemagglutinating membrane glycoprotein of Influenza C virus at 3 A resolution. Nature 289:366.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. Pfleiderer
    • 1
  • E. Routledge
    • 1
  • S. G. Siddell
    • 1
  1. 1.Institute of VirologyWürzburgGermany

Personalised recommendations