Expression of MHV-A59 M Glycoprotein: Effects of Deletions on Membrane Integration and Intracellular Transport

  • P. J. M. Rottier
  • J. Krijnse Locker
  • M. C. Horzinek
  • W. J. M. Spaan
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)


The M protein of coronaviruses is an integral membrane protein, the general properties of which have been described elsewhere in this volume. The protein is ascribed a pivotal role in the budding process of these viruses. Its restriction to internal membranes suggests it to be a major factor in determining the intracellular site of virion assembly. In addition, M is thought to effect budding through the interaction of its cytoplasmic tail with the nucleocapsid.


Mutant Protein Infectious Bronchitis Virus Recombinant Vaccinia Virus Feline Infectious Peritonitis Indirect Immunofluorescence Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Niemann, H., Geyer, R., Klenk, H.-D., Linder, D., Stirm, S., and Wirth, M. (1984). EMBO J. 3, 665–670.PubMedGoogle Scholar
  2. 2.
    Rottier, P., Armstrong, J., and Meyer, D.I. (1985). J.Biol.Chem. 260, 4648–4652.PubMedGoogle Scholar
  3. 3.
    Armstrong, J., Niemann, H., Smeekens, S., Rottier, P., and Warren, G. (1984). Nature 308, 751–752.PubMedCrossRefGoogle Scholar
  4. 4.
    Rottier, P., Brandenburg, D., Armstrong, J., van der Zeijst, B., and Warren, G. (1984). Proc.Natl.Acad.Sci.USA 81, 1421–1425.PubMedCrossRefGoogle Scholar
  5. 5.
    Rottier, P.J.M., Welling, G.W., Welling-Wester, S., Niesters, H.G.M., Lenstra, J.A., and van der Zeijst, B.A.M. (1986). Biochem. 25, 1335–1339.CrossRefGoogle Scholar
  6. 6.
    Machamer, C.E., and Rose, J.K. (1987). J.Cell Biol. 105, 1205–1214.PubMedCrossRefGoogle Scholar
  7. 7.
    Mayer, T., Tamura, T., Falk, M., and Niemann, H. (1988). J.Biol.Chem. 263, 14956–14963.PubMedGoogle Scholar
  8. 8.
    Rottier, P.J.M., and Rose, J.K. (1987). J.Virol. 61, 2042–2045.PubMedGoogle Scholar
  9. 9.
    Armstrong, J., McCrae, M., and Colman, A. (1987). J.Cell.Biochem. 35, 129–136.PubMedCrossRefGoogle Scholar
  10. 10.
    Mead, D.A., Szczesna-Skorupa, E., and Kemper, B. (1986). Prot.Eng. 1, 67–74.CrossRefGoogle Scholar
  11. 11.
    Zoller, M.J., and Smith, M. (1982). Nucleic Acids Res. 10, 6487–6500.PubMedCrossRefGoogle Scholar
  12. 12.
    Sanger, F., Coulson, A.R., Barrell, B.J., Smith, A.J.H., and Roe, B.A. (1980). J.Mol.Biol. 143, 161–178.PubMedCrossRefGoogle Scholar
  13. 13.
    Chakrabarti, S., Brechling, K., and Moss, B. (1985). Mol.Cell.Biol. 5, 3403–3409.PubMedGoogle Scholar
  14. 14.
    Rose, J.K., and Bergmann, J.E. (1982). Cell 30, 753–762.PubMedCrossRefGoogle Scholar
  15. 15.
    Rottier, P.J.M., Spaan, W.J.M., Horzinek, M.C., and van der Zeijst, B.A.M. (1981). J.Virol. 38, 20–26.PubMedGoogle Scholar
  16. 16.
    Fleming, J.O., Shubin, R.A., Sussman, M.A., Casteel, N., and Stohlman, S.A. (1989). Virol. 168, 162–167.CrossRefGoogle Scholar
  17. 17.
    Tooze, S.A., Tooze, J., and Warren, G. (1988). J.Cell Biol. 106, 1475–1487.PubMedCrossRefGoogle Scholar
  18. 18.
    Laude, H., Rasschaert, D.Huet, J.-C. (1987). J.gen.Virol. 68,1687–1693.PubMedCrossRefGoogle Scholar
  19. 19.
    Kapke, P.A., Tung, F.Y.T., Hogue, B.G., Brian, D.A., Woods, R.D., and Wesley, R. (1988). Virol. 165, 367–376.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • P. J. M. Rottier
    • 1
  • J. Krijnse Locker
    • 1
  • M. C. Horzinek
    • 1
  • W. J. M. Spaan
    • 1
  1. 1.Veterinary Faculty, Department of Infectious Diseases and Immunology, Institute of VirologyState UniversityUtrechtThe Netherlands

Personalised recommendations