Structure and Expression of the Bovine Coronavirus Hemagglutinin Protein

  • Thomas E. Kienzle
  • Sushma Abraham
  • Brenda G. Hogue
  • David A. Brian
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)


cDNA clones prepared from genomic RNA of the Mebus strain of bovine Coronavirus (BCV) were sequenced to reveal the hemagglutinin (H) gene of 1,272 bases that predicts a 47,700 mol. wt. apoprotein of 424 amino acids. The H gene mapped on the immediate 5′ side of the peplomer gene. The H protein sequence revealed a putative N-terminal signal peptide of 18 amino acids, 9 potential glycosylation sites, 14 cysteine residues, and a potential C-terminal anchor region of 26 amino acids. When transcripts of the gene were translated in vitro in the presence of microsomes, signal cleavage, glycosylation, and membrane anchorage were observed, but not disulfide-linked dimerization. Translation of a truncated mRNA having no sequence for the C-terminal anchor resulted in a nonanchored, intraluminal (intramicrosomal) protein. When the H protein was expressed in cells in the absence of other coronaviral proteins, it became glycosylated, dimerized, and transported to the cell surface. The BCV hemagglutinin protein, therefore, is a type 1 glycoprotein that contains all the information it needs for signal cleavage, glycosylation, disulfide-linked dimerization, and transport to the cell surface.


Signal Cleavage Hemagglutinin Protein Bovine Coronavirus Lipofectin Reagent Acetyl Esterase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson, D. J., and G. Blobel. 1983. Immunoprecipitation of protein from cell-free translations. Meth. Enzvmol., 96:111–120.CrossRefGoogle Scholar
  2. Deregt, D., M. Sabara, and L. A. Babiuk, 1987. Structural proteins of bovine Coronavirus and their intracellular processing. J. Gene Virol., 68:2863–2877.CrossRefGoogle Scholar
  3. Fuerst, T. R., P. L. Earl, and B. Moss. 1987. Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Mol . Cell. Biol., 7:2538–2544.PubMedGoogle Scholar
  4. Fujiki, Y., A. Hubbard, S. Fowler, and P. Lasarow. 1982. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J. Cell Biol., 93:97–102.PubMedCrossRefGoogle Scholar
  5. Henikoff, S. 1984. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene, 28:351–359.PubMedCrossRefGoogle Scholar
  6. Herrler, G., I. Durkop, H. Becht, and H. Klenk. 1988. The glycoprotein of influenza C virus is the hemagglutinin, esterase, and fusion factor. J. Gen. Virol., 69:839–846.PubMedCrossRefGoogle Scholar
  7. Hogue, B. G., T. E. Kienzle, and D. A. Brian. 1989. Synthesis and processing of the bovine enteric Coronavirus hemagglutinin protein. J. Gen. Virol., 70:345–352.PubMedCrossRefGoogle Scholar
  8. Hogue, B. G., B. King, and D. A. Brian. 1984. Antigenic relationships among proteins of bovine Coronavirus, human respiratory Coronavirus, 0C43, and mouse hepatitis Coronavirus A59. J. Virol., 51:384–388.PubMedGoogle Scholar
  9. Kaariainen, L., I. Virtanen, J. Saraste, and S. Keranen. 1983. Transport of virus membrane glycoproteins, use of temperature-sensitive mutants and organelle-specific lectins. Meth. Enzvmol., 96:453–465.CrossRefGoogle Scholar
  10. Keck, J. G., B. G. Hogue, D. A. Brian and M. M. C. Lai. 1988. Temporal regulation of bovine Coronavirus RNA Synthesis. Virus Res., 9:343– 356.PubMedCrossRefGoogle Scholar
  11. King, B., and D. A. Brian. 1982. Bovine Coronavirus structural proteins. J. Virol., 42:700–707PubMedGoogle Scholar
  12. King, B., B. J. Potts, and D. A. Brian. 1985. Bovine Coronavirus hemagglutinin protein. Virus Res., 2:53–59.PubMedCrossRefGoogle Scholar
  13. Lapps, W., B. G. Hogue, and D. A. Brian. 1987. Sequence analysis of the bovine Coronavirus nucleocapsid and matrix protein genes. Virology, 157:47–57.PubMedCrossRefGoogle Scholar
  14. Lau, J. T. V., J. Welply, P. Shenbagamurthi, F. Naider, and W. J. Lennarz. 1988. Substrate recognition of oligosaccharyl transferase: Inhibition of cotranslational glycosylation by acceptor peptides, J. Biol. Chem., 258:15,255–15,250.Google Scholar
  15. Luytjes, W., P. Bredenbeck, A. Noten, M. Horzinek, and W. Spaan., 1988. Sequence of mouse hepatitis virus A59 mRNA2: indications for RNA recombination between coronaviruses and influenza C virus. Virol166:415–422.CrossRefGoogle Scholar
  16. Luytjes, W., P. Bredenbeck, A. Noten, M. Horzinek, and W. Spaan., 1988. Sequence of mouse hepatitis virus A59 mRNA2: indications for RNA recombination between coronaviruses and influenza C virus. Virol., 166:415–422. Parker, M. D., G. J. Cox, D. Deregt, D. R. Fitzpatrick, and L. A. Babunk. 1989. Cloning and in vitro expression of the gene for the E3 hemagglutinin glycoprotein of bovine Coronavirus. J. Gen. Virol., 70:155–164.PubMedCrossRefGoogle Scholar
  17. Vlasak, R., M. Krystal, M. Nacht, and P. Palese. 1987. The influenza CGoogle Scholar
  18. virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virol., 160:419–425.Google Scholar
  19. Vlasak, R., W. Luytjes, J. Leider, W. Spaan, and P. Palese. 1988. The E3 protein of bovine Coronavirus is a receptor-destroying enzyme with acetyl esterase activity. J. Virol., 62:4686–4690.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Thomas E. Kienzle
    • 1
  • Sushma Abraham
    • 1
  • Brenda G. Hogue
    • 1
  • David A. Brian
    • 1
  1. 1.Department of MicrobiologyThe University of TennesseeKnoxvilleUSA

Personalised recommendations