Energetics of Low Affinity Amino Acid Transport into Brain Slices

  • Miriam Banay-Schwartz
  • David N. Teller
  • Abel Lajtha
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 69)


This review concentrates on the following: What is the energy source for low affinity amino acid transport into brain slices? Is it glycolysis, or Ion flux, or both? In this paper, glycolysis refers to “breakdown of carbohydrate to pyruvate by the Embden-Myerhoff-Parnas pathway, irrespective of the subsequent fate of pyruvic acid”40. Neither the Pasteur or the Crabtree effect were examined in our studies25,40


Active Transport Brain Slice Amino Acid Transport Amino Acid Uptake Active Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadom, P.N., and Scholefield, P.G., Amino acid transport in brain cortex slices. I. The relationship between energy production and the glucose-dependent transport of glycine, Can. J. Biochem., 40 (1962) 1575–1590.PubMedGoogle Scholar
  2. 2.
    Baker, P.F., and Potashner, S.J., The dependence of glutamate uptake by crab nerve on external Na+ and K+, Biochim. Biophys. Acta, 249 (1971) 616–622.CrossRefGoogle Scholar
  3. 3.
    Banay-Schwartz, M., Piro, L., and Lajtha, A., Relationship of ATP levels to amino acid transport in slices of mouse brain. Arch. Biochem. Biophys., 145 (1971) 199–210.CrossRefGoogle Scholar
  4. 4.
    Banay-Schwartz, M., Teller, D.N., Gergely, A., and Lajtha, A., The effects of metabolic inhibitors on amino acid uptake and the levels of ATP, Na+ and K+ in incubated slices of mouse brain, Brain Research, 71 (1974) 117–131.CrossRefGoogle Scholar
  5. 5.
    Barnes, E.M., Jr., Multiple sites for coupling of glucose transport to the respiratory chain of membrane vesicles from Axotobacter vinelandii, J. Biol. Chem., 248 (1973) 8120–8124.PubMedGoogle Scholar
  6. 6.
    Bennett, J.P., Jr., Mulder, A.H., and Snyder, S.H., Neurochemical correlates of synaptically active amino acids, Life Sciences, 15 (1974) 1045–1056.CrossRefGoogle Scholar
  7. 7.
    Bennun, A., Hypothesis for coupling energy transduction with ATP synthesis or ATP hydrolysis, Nature, New Biol., 233 (1971) 5–8.CrossRefGoogle Scholar
  8. 8.
    Berger, E.A., Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli, Proc. Nat. Acad. Sei. (U.S.), 70 (1973) 1514–1518.ADSCrossRefGoogle Scholar
  9. 9.
    Bull, R.J., and Cummins, J.T., Influence of potassium on the steady-state redox potential of the electron transport chain in slices of rat cerebral cortex and the effect of ouabain, J. Neurochem., 21 (1973) 923–937.CrossRefGoogle Scholar
  10. 10.
    Bull, R.J., and Lutkenhoff, S.D., Early changes in respiration, aerobic glycolysis and cellular NAD(P)H in slices of rat cerebral cortex exposed to elevated concentrations of potassium, J. Neurochem., 21 (1973) 913–922.CrossRefGoogle Scholar
  11. 11.
    Christensen, H.N., De Cespedes, C., Handlogten, M.E., and Ronguist, G., Energization of amino acid transport, studied for the Ehrlich ascites tumor cell, Biochlm. Biophys. Acta, 300 (1973) 487–522.Google Scholar
  12. 12.
    Colombini, M., Johnstone, R.M., Na+-dependent amino acid transport in plasma membrane vesicles from Ehrlich ascites cells, J. Membrane Biol., 15 (1974) 261–276.CrossRefGoogle Scholar
  13. 13.
    De Cespedes, C., and Christensen, H.N., Complexity in valinomycin effects on amino acid transport, Biochim. Biophys. Acta, 339 (1974) 139–145.CrossRefGoogle Scholar
  14. 14.
    De Feudis, F.S., Amino acids as central neurotransmitters, Ann. Rev. Pharmacol., 15 (1975) 105–130.CrossRefGoogle Scholar
  15. 15.
    Geek, P., Heinz, E., and Pfeiffer, B., Evidence against direct coupling between amino acid transport and ATP hydrolysis, Biochim. Biophys. Acta, 339 (1974) 419–425.CrossRefGoogle Scholar
  16. 16.
    Click, N.B., Inhibition of transport reactions. In R.M. Höchster, M. Kates and J.H. Quastel (Eds.), Metabolic Inhibitors, Vol. III, Academic Press, New York, 1972, pp. 2–38.Google Scholar
  17. 17.
    Goldfischer, S., Moore, C.L., Johnson, A.B., Spiro, A.J., Valsamis, M.P., Wisnieniski, H.K., Ritch, R.H., Norton, W.T., Rapin, I., and Gartner, L.M., Peroxisomal and mitochondrial defects in the cerebrohepato-renal syndrome, Science, 182 (1973) 61–64.ADSCrossRefGoogle Scholar
  18. 18.
    Gómez-Puyou, A., Sandoval, F., Chavez, E., Freites, D., and De Gomez-Puyou, M.T., Dependency of the ATPase and32P-ATP exchange reaction of mitochondria on K+ and electron transport, Arch. Biochem, Biophys., 153 (1972) 215–225.CrossRefGoogle Scholar
  19. 19.
    Green, D.E., The electromechanochemlcal model for energy coupling in mitochondria, Biochim. Biophys. Acta, 346 (1974) 27–78.CrossRefGoogle Scholar
  20. 20.
    Heinz, E., and Geek, P., The efficiency of energetic coupling between Na+ flow and amino acid transport in Ehrlich cells -A revised assessment., Biochim. Biophys. Acta, 339 (1974) 426–471.CrossRefGoogle Scholar
  21. 21.
    Hinds, T.R., Brodie, H.F., Relationship of a proton gradient to the active transport of proline with membrane vesicles from Mycobacterium phlei, Proc. Nat. Acad. Sei., 71 (1974) 1202–1206.ADSCrossRefGoogle Scholar
  22. 22.
    Hinkle, P.C., Electron transfer across membranes and energy coupling. Fed. Proc., 32 (1973) 1988–1991.PubMedGoogle Scholar
  23. 23.
    Kaback, H.R., Transport across isolated bacterial cytoplasmic membranes, Biochim. Biophys. Acta, 265 (1972) 367–416.CrossRefGoogle Scholar
  24. 24.
    Kobayashi, H., Kin, E., and Anraku, Y., Transport of sugars and amino acids in bacteria, X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli, J. Biochem., 76 (1974) 251–261.CrossRefGoogle Scholar
  25. 25.
    Koobs, D.H., Phosphate mediation of the Crabtree and Pasteur effects. Science, 178 (1972) 127–133.ADSCrossRefGoogle Scholar
  26. 26.
    Ku, D., Akera, T., Tobin, T., and Brody, T.M., Effects on rubidium on cardiac tissue; Inhibition of Na+, K+-ATPase and stimulation of contractile force, Res. Comm. Chem. Path. Pharmacol., 9 (1974) 431–440.Google Scholar
  27. 27.
    Lajtha, A., Transport as control mechanism of cerebral metabolite levels. In A. Lajtha and D.H. Ford (Eds.), Progress in Brain Research, Vol. 29, Elsevier, 1968, pp. 201–216.Google Scholar
  28. 28.
    Lauger, P., Carrier-mediated ion transport, Science, 178 (1972). 24–30.ADSCrossRefGoogle Scholar
  29. 29.
    Levi, G., Kandera, J., and Lajtha, A., Control of cerebral metabolite levels. I. Amino acid uptake and levels in various species. Arch. Biochem. Biophys., 119 (1967) 303–311.CrossRefGoogle Scholar
  30. 30.
    Lombardi, F.J., and Kaback, H.R., Mechanisms of active transport in isolated bacterial membrane vesicles. VITT. The transport of amino acids by membranes prepared from Escherichia coli, J. Biol. Chem., 247 (1972) 7844–7857.PubMedGoogle Scholar
  31. 31.
    MacDonald, R. E., and Lanyr, J.K., Light-induced leucine transport in Halobacterium halobium envelope vesicles, A chemiosmotic system. Biochemistry, 14 (1975) 2882–2888.CrossRefGoogle Scholar
  32. 32.
    Meijer, A.J., and Van Dam, K., The metabolic significance of anion transport in mitochondria, Biochim. Biophys. Acta, 246 (1974) 213–244.CrossRefGoogle Scholar
  33. 33.
    Melbourne, A.D., and Charalampous, F.C., Energy source for active transport of a-aminoisobutyric acid in KB cells, J. Biol. Chem., 249 (1974) 2793–2800.PubMedGoogle Scholar
  34. 34.
    Nukada, T., The uptake of glycine by rat mitochondria. Can. J. Biochem., 43 (1965) 1119–1127.CrossRefGoogle Scholar
  35. 35.
    Prezioso, G., Hong, J.-S., Kerwar, G.K., and Kaback, H.R., Mechanisms of active transport in isolated bacterial membrane vesicles. XII. Active transport by a mutant of Escherichia Coli uncoupled for oxidative phosphorylation. Arch. Biochem.Biophys., 154 (1973) 575–582.CrossRefGoogle Scholar
  36. 36.
    Schultz, S.G., and Curran, P.F., Coupled transport of sodium and organic solutes, Physiol. Revs., 50 (1970) 637–718.CrossRefGoogle Scholar
  37. 37.
    Southard, J.H., and Green, D.E., Control of the energy coupling modes in mitochondria by mercurials, Biochem. Biophys. Res. Comm., 61 (1974) 1310–1316.CrossRefGoogle Scholar
  38. 38.
    Taylor, A., Hess, J.J., and Maffly, R.H., On the effects of tricarboxylic acid cycle intermediates on sodium transport by the toad bladder, J. Membrane Biol., 15 (1974) 319–329.CrossRefGoogle Scholar
  39. 39.
    Terry, P.M., Vidaver, G.A., The effect of gramicidin on sodium- dependent accumulation of glycine by pigeon red cells: A test of the cation gradient hypothesis, Biochim. Biophys. Acta, 323 (1973) 441–455.CrossRefGoogle Scholar
  40. 40.
    Van Eys, J., Regulatory mechanisms in energy metabolism. In D.M. Bonner (Ed.), Control Mechanisms in Cellular Processes, The Ronald Press Co., New York, 1961, pp. 141–166.Google Scholar
  41. 41.
    Weiss, G.B., and Hertz, L., Effects of different potassium ion concentrations and of procaine and pentobarbital on 14C- glutamate fluxes in rat brain-cortex slices, Biochem. Soc. Trans., 2 (1974) 274–276.CrossRefGoogle Scholar
  42. 42.
    Wilbrandt, W., Recent trends in membrane transport research. Life Sciences, 16 (1975) 201–212.CrossRefGoogle Scholar
  43. 43.
    Young, J.H., Korman, E.F., and McLick, J., On the mechanism of ATP synthesis in oxidative phosphorylation: A review, Biorganic Chemistry, 3 (1974) 1–15.CrossRefGoogle Scholar
  44. 44.
    Note added in proof: HEPES-2 medium contains 119 mM NaCl, 5 mM KCl, 0.75 mM CaClz, 1.2 mM MgSO4, 1 mM NaH2PO4, 1 mM NaHCO3 10 mM glucose, 25 mM HEPES (N-2-hydroxyethylpiperazine N’-2-ethane sulfonic acid), and the pH is adjusted to 7.35 with IN NaOH at 25°. The final Na+ concentration is 132 mEq/1.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Miriam Banay-Schwartz
    • 1
  • David N. Teller
    • 1
  • Abel Lajtha
    • 1
  1. 1.New York State Research Institute for Neurochemistry and Drug AddictionWard’s Island, New YorkUSA

Personalised recommendations