On the Uptake Mechanism of Choline in Nerve Cell Cultures

  • R. Massarelli
  • P. Mandel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 69)


Much evidence points to the possibility that the rate limiting step in acetylcholine synthesis is bound to a mass action effect of its substrates: choline and acetyl-CoA 1–3. The availability of choline and acetyl-CoA thus is of crucial importance for the synthesis of the neurotransmitter.


Chick Embryo Nerve Cell Culture Choline Uptake High Affinity Uptake Acetylcholine Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    White, H.L., and Wu, J.C., Kinetics of choline acetyltransferase (EC from human and other mammalian central and peripheral nervous tissue. J. Neurochem. 20 (1973) 297–307.CrossRefGoogle Scholar
  2. 2.
    Glover, V.A.S., and Potter, L.T., Purification and properties of choline acetyltransferase from ox brain striate nuclei. J. Neurochem. 18 (1971) 571–580.CrossRefGoogle Scholar
  3. 3.
    Krell, R.D., and Goldberg, A.M., Effect of choline acetyltrans- ferase inhibitors on mouse and guinea pig brain choline and acetylcholine. Biochem. Pharmacol. 24 (1975) 391–396.CrossRefGoogle Scholar
  4. 4.
    Birks, R.I., and Macintosh, F.C., A cetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem. Physiol. 39 (1961) 787–827.CrossRefGoogle Scholar
  5. 5.
    Bremer, J., and Greenberg, D.M., Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine). Biochim. Biophys. Acta (1961) 205–216.Google Scholar
  6. 6.
    Ansell, G.B. and Spanner, S., The metabolism of labelled ethanolamine in the brain of the rat in vivo.J. Neurochem. 14 (1967) 873–885.CrossRefGoogle Scholar
  7. 7.
    Browning, E.T., and Schulman, M.P., [14C] acetylcholine synthesis by cortex slices of rat brain. J. Neurochem., 15 (1968) 1391–1405.CrossRefGoogle Scholar
  8. 8.
    Ansell, G.B., and Spanner, S., Studies on the origin of choline in the brain of the rat. Biochem. J. 122 (1971) 741–750.CrossRefGoogle Scholar
  9. 9.
    Dross, K., and Kewitz, H., Concentration and origin of choline in the rat brain. Naunyn-Schmiedeberg’s Arch. Pharmacol. 274 (1972) 91–106.CrossRefGoogle Scholar
  10. 10.
    Freeman, J.J., Choi, R.L., and Jenden, D.J., Plasma choline: its turnover and exchange with brain choline. J. Neurochem. 24 (1975) 729–734.CrossRefGoogle Scholar
  11. 11.
    Choi, R.L., Freeman, J.J., and Jenden, D.J., Kinetics of plasftia choline in relation to turnover of brain choline and formation of acetylcholine. J. Neurochem. 24 (1975) 735–742.CrossRefGoogle Scholar
  12. 12.
    Spanner, S., Hall, R.C., and Ansell, G.B., Arteriovenous differences of choline and choline lipids across the brain of rat and rabbit. Biochem. Soc. Trans., 3 (1975) 120.CrossRefGoogle Scholar
  13. 13.
    Martin, K., Concentrative accumulation of choline by human erythrocytes. J. Gen. Physiol., 51 (1968) 497–516.CrossRefGoogle Scholar
  14. 14.
    Green, A.R., Boullin, D.J., Massarelli, R., and Hanin, I., Can the human blood platelet be used as a model for cholinergic nerve ending. Life Sei., 11 (1972) 1049–1058.CrossRefGoogle Scholar
  15. 15.
    Schuberth, J., Sundwall, A., SÖrbo, B., and Lindell J.O., Uptake of choline by mouse brain slices. J. Neurochem.,13 (1965) 347–352.CrossRefGoogle Scholar
  16. 16.
    Potter, L.T., The uptake of choline by nerve endings isolated from the rat cerebral cortex. In P.N. Campbell (Ed.), The Interaction of Drugs and Subcellular Components on animal Cells, Churchill, London, 1968, pp. 293–304.Google Scholar
  17. 17.
    Marchbanks, R.M., The uptake of [14C]choline into synaptosomes in vitro. Biochem. J. 110 (1968) 533–541.CrossRefGoogle Scholar
  18. 18.
    Diamond, I., and Kennedy, E.P., Carrier mediated transport of choline into synaptic nerve endings. J. Biol. Chem., 244 (1969) 3258–3263.PubMedGoogle Scholar
  19. 19.
    Diamond, I., and Milfay, D., Uptake of [3H] methyl choline by microsomal, synaptosomal,mitochondrial and synaptic vesicles fractions of rat brain. J. Neurochem., 19 (1972) 1899–1909.CrossRefGoogle Scholar
  20. 20.
    Hemsworth, B.A., Darmer, K.I., and Bosmann, H.B., The incorporation of choline into isolated synaptosomal and synaptic vesicles fractions in the presence of quaternary ammonium compounds. Neuropharmacol., 10 (1971) 109–120.CrossRefGoogle Scholar
  21. 21.
    Yamamura, H., and Snyder, S.H., Choline: high affinity uptake by rat brain synaptosomes. Science, 178 (1972) 626–628.ADSCrossRefGoogle Scholar
  22. 22.
    Yamamura, H., and Snyder, S.H., High affinity transport of choline into synaptosomes of rat brain. J. Neurochem., (1973) 1355–1374.Google Scholar
  23. 23.
    Haga, T., and Nöda, H., Choline uptake system of rat brain synaptosomes. Biochim. Biophys. Acta, 291 (1973) 564–575.CrossRefGoogle Scholar
  24. 24.
    Guyenet, P., Lefresne, P., Rossier, J., Beaujouan, J.C., and Glowinski, J., Effect of sodium, h6micholinium-3 and antipar- kinson drugs on [14C] acetylcholine synthesis and [3H] choline uptake in rat striatal synaptosomes. Brain Res., 62 (1973) 523–529.CrossRefGoogle Scholar
  25. 25.
    Guyenet, P. Inhibition by hemicholinium-3 of [14C] acetylcholine synthesis and [3H] choline high affinity uptake in the rat striatal synaptosomes. Molec. Pharmacol., 9 (1973) 630–639.Google Scholar
  26. 26.
    Dowdall, M.J., and Simon, E.J., Comparative studies on synaptosomes: uptake of [Me-3H]-choline by synaptosomes from squid optic lobes. J. Neurochem., 21 (1973) 969–982.CrossRefGoogle Scholar
  27. 27.
    Mandel, P., Ciesielski-Treska, J., Kermetet, J.C., Hertz, L., Nissen, K., Tholey, G., and Wärter, F., Some histochemical, biochemical, and pharmacological aspects of differentiation of neuroblastoma cells of mouse. In E. Genazzani and H. Herken (Eds), Central Nervous System - Studies on Metabolic Regulation and Function, Springer Verlag, New York, 1973, pp. 223–230.Google Scholar
  28. 28.
    Mandel, P., Ciesielski-Treska, J., Hermetet, J.C., Zwiller, J., Mack, G., and Goridis, C., Neuroblastoma cells as a tool for neuronal molecular biology. Frontiers in Catecholamine Research, Pergamon Press, London,1973, pp. 277–283.CrossRefGoogle Scholar
  29. 29.
    Sensenbrenner, M., Booher, J., and Mandel, P., Cultivation and growth of dissociated neurons from chick embryo cerebral cortex in the presence of different substances. Z. Zellforsch, 117 (1971) 559–569.CrossRefGoogle Scholar
  30. 30.
    Booher, J., and Sensenbrenner, M., Growth and cultivation of dissociated neurons and glial cells from embryonic chicken, rat and human brain in flask culture. Neurobiol., 2 (1972) 97–105.Google Scholar
  31. 31.
    Goridis, C., Massarelli, R., Sensenbrenner, M., and Mandel, P., Guanyl cyclase in chick embryo brain cell cultures: evidence of neuronal localization. J. Neurochem., 23 (1974) 135–138.CrossRefGoogle Scholar
  32. 32.
    Massarelli, R., Ciesielski-Treska, J., Ebel, A., and Mandel, P. Choline uptake in neurobalstoma cell cultures: influence of ionic environment. Pharmacol. Res. Comm., 5 (1973) 397–406.CrossRefGoogle Scholar
  33. 33.
    Massarelli, R., Sensenbrenner, M., Ebel, A., and Mandel, P., Choline uptake in nerve cell cultures. Neurobiol., 4 (1974) 293–300.Google Scholar
  34. 34.
    Massarelli, R., Ciesielski-Treska, J., Ebel, A., and Mandel, P. Kinetics of choline uptake in neuroblastoma clones. Biochem. Pharmacol., 23 (1974) 2857–2865.CrossRefGoogle Scholar
  35. 35.
    Massarelli, R., Ciesielski-Treska, J., Ebel, A., and Mandel, P. Choline uptake in glial cell cultures. Brain Res., 81 (1974) 361–363.CrossRefGoogle Scholar
  36. 36.
    Massarelli, R., Sensenbrenner, M., Ebel, A., and Mandel, P., Kinetics of choline uptake in mixed neuronal glial and exclusively glial cultures. Neurobiol., 4 (1974) 414–418.Google Scholar
  37. 37.
    Richelson, E., and Thompson, E.J., Transport of neurotransmitter precursors into cultured cells. Nature New Biology, 241 (1973) 201–204.CrossRefGoogle Scholar
  38. 38.
    Haber, B.: This symposium.Google Scholar
  39. 39.
    Massarelli, R., Etudes sur le metabolisme de l’acetylcholine in vitro et in vivo. Thése de Doctorat d’Etat ès-Sciences, Universite L. Pasteur, Strasbourg, 1975, p. 20.Google Scholar
  40. 40.
    Haeffner, E.W., Studies on choline permeation through the plasma membrane and its incorporation into phosphatidyl choline of Ehrlich - Lettre ascites tumor cells in vitro. Eur. J. Biochem., 51 (1975) 219–228.CrossRefGoogle Scholar
  41. 41.
    Kuhar, M.J., Sethy, V.H., Roth, R.H., and Aghajanian, G.K., Choline: selective accumulation of central cholinergic neurons. J. Neurochem., 20 (1973) 581–593.CrossRefGoogle Scholar
  42. 42.
    Sorimachi, M., and Kataoka, K., Choline uptake by nerve terminal: a sensitive and a specific marker of cholinergic innervation. Brain Res., 72 (1974) 350–353.CrossRefGoogle Scholar
  43. 43.
    Massarelli, R., Stefanovic, V., and Mandel, P., Effect of ChE inhibitors on choline high affinity uptake and ectocholines- terase activity in nerve cell cultures. Vth International Meeting of the International Society for Neurochemistry, abstract 153 (1975).Google Scholar
  44. 44.
    Stefanovic, V., Massarelli, R., Mandel, P., and Rosenberg, A., Effect of cellular desialylation on choline high affinity uptake and ecto-cholinesterase activity of cholinergic neuroblasts. Biochem. Pharmacol., 24 (1975) 1923–1928.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • R. Massarelli
    • 1
  • P. Mandel
    • 1
  1. 1.Centre de NeurochimieC.N.R.S.StrasbourgFrance

Personalised recommendations