Influence of Hormones on Tissue and Blood Fibrinolytic Activity

  • Tage Astrup


Resolution of fibrin deposits in the living organism is caused by a specific process of fibrinolysis. An enzyme precursor, plasminogen, present in the circulating blood, is converted by activators into the blood protease, plasmin, the enzyme in the body primarily attacking fibrin. Activators of plasminogen are present in the blood or in tissues. Their effects in blood are balanced by large amounts of inhibitory compounds. Some organs and tissues are particularly rich in plasminogen activator, while only few contain inhibitory agents except for such inhibitors as are derived from the blood present in the organ or in the interstitial fluid. The biochemistry and physiology of the tissue plasminogen activator has recently been reviewed (1), as has the role of the fibrinolytic system in tissue repair (2).


Plasminogen Activator Sperm Cell Seminal Plasma Fibrinolytic Activity Menstrual Blood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astrup, T.: Tissue activators of plasminogen. Fed. Proc. 25: 42–51 (1966).PubMedGoogle Scholar
  2. 2.
    Astrup, T.: Blood coagulation and fibrinolysis in tissue culture and tissue repair. Biochem. Pharmacol. Supplement: 241–257 (1968).Google Scholar
  3. 3.
    Astrup, T.: Fibrinolytic mechanisms in man and animals. In: Dynamics of Thrombus Formation and Dissolution, International Symposium, Washington, D.C., August 31, 1968, in print.Google Scholar
  4. 4.
    Astrup, T. and Wright, I.S. (editors): Blood Coagulation, Thrombosis, and Female Hormones - Transactions of a Symposium. James F. Mitchell Foundation, Washington, D.C., 1968.Google Scholar
  5. 5.
    Albrechtsen, O.K.: Fibrinolytic activity in the organism. Acta Physiol. Scand. 47 (Supplementum 165): 1–112 (1959).CrossRefGoogle Scholar
  6. 6.
    Whitehouse, H.B.: The physiology and pathology of uterine haemorrhage. Lancet 1: 877–885 (1914).Google Scholar
  7. 7.
    Christea, G.M. and Denk, W.: Ueber Blutgerinnung während der Menstruation. Wien. Klin. Wschr. 23: 234–243 (1910).Google Scholar
  8. 8.
    Zondek, B.: Ueber Menstrualblut. Z. Geburtsh. Gynäk. 83: 870–874 (1921).Google Scholar
  9. 9.
    Krossj I.: Uterine secretion: A brief investigation of its nature in the human being. Amer. J. Obstet. Gynec. 7:310–313 (1924).Google Scholar
  10. 10.
    Halban, J. and Frankl, O.: Zur Biochemie det Uterusmukosa. Gynäk. Rundschau. 4: 471–484 (1910).Google Scholar
  11. 11.
    Caffier, P.: Die Rolle des menschlichen Uterus als mesoder- males Verdauungsorgan. Münch. Med. Wschr. 77: 389 (1930).Google Scholar
  12. 12.
    Muggins, C., Vail, V.C. and Davis, M.E.: Fluidity of menstrual blood; proteolytic effect. Amer. J. Obstet. Gynec. 46: 78–84 (1943).Google Scholar
  13. 13.
    Page, E.W., Glendening, M.B. and Parkinson, D.: Cyclic biochemical changes in the human endometrium with specific reference to the fibrinolytic system. Amer. J. Obstet. Gynec. 62: 1100–1105 (1951).PubMedGoogle Scholar
  14. 14.
    Phillips, L.L., Butler, B.C. and Taylor, H.C.: A study of cytofibrinokinase and fibrinolysin in extracts of tissue from human myometrium, endometrium, decidua and placenta. Amer. J. Obstet. Gynec. 71: 342–349 (1956).PubMedGoogle Scholar
  15. 15.
    Albrechtsen, O.K.: The fibrinolytic activity of the human endometrium. Acta Endocr. 23: 207–218 (1956).PubMedGoogle Scholar
  16. 16.
    Albrechtsen, O.K.: The fibrinolytic activity of human tissues. Brit. J. Haemat. 3: 284–291 (1957).PubMedCrossRefGoogle Scholar
  17. 17.
    Albrechtsen, O.K.: The fibrinolytic activity of menstrual blood. Acta Endocr. 23: 219–226 (1956).PubMedGoogle Scholar
  18. 18.
    Rybo, G.: Plasminogen activators in the endometrium. I. Methodological aspects. Acta Obstet. Gynec. Scand. 45: 411–428 (1966).PubMedCrossRefGoogle Scholar
  19. 19.
    Rybo, G.: Plasminogen activators in the endometrium. II. Clinical aspects. Variation in the concentration of plasminogen activators during the menstrual cycle and its relation to menstrual blood loss. Acta Obstet. Gynec. Scand. 45: 429–450 (1966).CrossRefGoogle Scholar
  20. 20.
    Todd, A.S.: The histological localisation of fibrinolysin activator. J. Path. Bact. 78: 281–283 (1959).PubMedCrossRefGoogle Scholar
  21. 21.
    Todd, A.S.: Some topographical observations on fibrinolysis. J. Clin. Path. 17: 324–327 (1964).PubMedCrossRefGoogle Scholar
  22. 22.
    Todd, A.S.: Localization of fibrinolytic activity in tissues. Brit. Med. Bull. 20: 210–212 (1964).PubMedGoogle Scholar
  23. 23.
    Luginbuhl, W.H. and Picoff, R.C.: The localization and characteristics of endometrial fibrinolysis. Amer. J. Obstet. Gynec. 95:462–467 (1966).PubMedGoogle Scholar
  24. 24.
    Greenblatt, R.B. and Barfield, W.E.: The effect of intravenous estrogen in uterine bleeding. J. Clin. Endocr. 11:821–832 (1951).PubMedCrossRefGoogle Scholar
  25. 25.
    Snaith, L.: Oestrogen therapy in habitual abortion. Proc. Soc. Study Fertil. 1: 32–34 (1950).Google Scholar
  26. 26.
    Beller, F.K., Goessner, W. and Herrschlein, H.J.: Tissue activator of the fibrinolytic system in placental tissue. Obstet. Gynec. 20: 117–119 (1962).PubMedCrossRefGoogle Scholar
  27. 27.
    Champy, C. and Morita, J.: Recherches sur les culture de tissus. Observations sur les cultures de testicule et d’ovaire chez les mammiferes, les Oiseaux et les Batraciens. Arch. Exp. Zellforsch. 5: 308–340 (1928).Google Scholar
  28. 28.
    Galstjan, S.: Über die Verwandlungen des epithels der Gebärmutter im Explantat. Arch. Exp. Zellforsch. 13: 635- 660 (1933).Google Scholar
  29. 29.
    Albrechtsen, O.K.: Effect of estradiol on fibrinolytic activity of rat uterus. Proc. Soc. Exp. Biol. 94: 700–702 (1957).PubMedGoogle Scholar
  30. 30.
    Kwaan, H.C. and Albrechtsen, O.K.: Histochemical study of fibrinolytic activity in the rat uterus in normal and hormonally induced estrus. Amer. J. Obstet. Gynec. 95: 468–473 (1966).PubMedGoogle Scholar
  31. 31.
    Tympanidis, K. and Astrup, T.: Transient appearance of fibrinolytic activity at the epithelium of the rat uterus. J. Clin. Path. 22: in print (1968).Google Scholar
  32. 32.
    Pandolfi, M. and Astrup, T.: A histochemical study of the fibrinolytic activity; cornea, conjunctiva, and lacrimal gland. Arch. Ophthal. 77:258–264 (1967).PubMedCrossRefGoogle Scholar
  33. 33.
    Astrup, T., Henrichsen, J., Tympanidis, K. and King, A.E.: Fibrinolytically active vaginal epithelial cells. Nature 214: 297–298 (1967).PubMedCrossRefGoogle Scholar
  34. 34.
    Astrup, T., Beller, F.K., Glas, P. and Rasmussen, J.: Fibrinolytic activity of the human uterine tube. Obstet. Gynec. 25: 853–857 (1965).PubMedGoogle Scholar
  35. 35.
    Tympanidis, K. and Astrup, T.: Localization of fibrinolytic activity in the rat oviduct. Obstet. Gynec. 31: 727–731 (1968).PubMedCrossRefGoogle Scholar
  36. 36.
    Tympanidis, K. and Astrup, T.: Fibrinolytic activity of the pregnant uterus, decidua, and placenta in rat. Obstet. Gynec. in print (1969).Google Scholar
  37. 37.
    Phillips, L.L. and McKay, D.G.: Profibrinolysin activator in the rat placenta. Amer. J. Obstet. Gynec. 87: 56–62 (1963).PubMedGoogle Scholar
  38. 38.
    Picoff, R.C. and Luginbuhl, W.H.: Fibrin in the endometrial I stroma: Its relation to uterine bleeding. Amer. J. Obstet. Gynec. 88: 642–646 (1964).PubMedGoogle Scholar
  39. 39.
    McKay, D.G.: The placenta in experimental toxemia of pregnancy. Obstet. Gynec. 20: 1–22 (1962).CrossRefGoogle Scholar
  40. 40.
    Hnat, R.F., Anderson, G.G. and Alonzo, D.R.: Diffuse intravascular coagulation associated with a degenerating myoma during pregnancy. Obstet. Gynec. 29: 207–210 (1967).PubMedGoogle Scholar
  41. 41.
    Rasmussen, J., Roberts, H.R. and Astrup, T.: Fibrinolytic activity of the normal and fibromyomatous human uterus. Surg. Gynec. Obstet. 118: 1277–1280 (1964).Google Scholar
  42. 42.
    Braknan, P.: Effect of contraceptive hormone preparations on plasma fibrinolytic activity. This Conference.Google Scholar
  43. 43.
    Tympanidis, K. and Astrup, T.: Hormonal influence on fibrinolytic activity of uterus and vagina in the juvenile rat. Acta Endocr. in print (1968).Google Scholar
  44. 44.
    Ingemanson, B.: A method of reducing the fibrinolytic activity of endometrium cells in plasma clot tissue culture. Experientia 15: 159 (1959).PubMedCrossRefGoogle Scholar
  45. 45.
    Kullander, S. and Källén, B.: The fibrinolytic activity of human endometrium studied in tissue culture- I. Normal endometrial and decidual tissue. Acta Obstet. Gynec. Scand. 40: 1–15 (1961).PubMedCrossRefGoogle Scholar
  46. 46.
    Kullander, S. and Käufen, B.: The fibrinolytic activity of human endometrium studied in tissue culture. II. Carcinoma of the uterine body. Acta Obstet. Gynec. Scand. 40: 234–243 (1961).PubMedCrossRefGoogle Scholar
  47. 47.
    Maurer, H.R., Rounds, D.E. and Raiborn, Ch.W.: Effects of oestradiol on calf endometrial tissue in vitro. Nature 213: 182–183 (1967).PubMedCrossRefGoogle Scholar
  48. 48.
    Kross, I.: Uterine secretion - an experimental investigation into its effect upon coagulation of the blood. Surg. Gynec. Obstet. 36: 217–219 (1923).Google Scholar
  49. 49.
    Homburger, F., Bernfeld, P., Treger, A., Grossman, M.S. and Harpel, P.: Endometrial secretions. Ann. N.Y. Acad. Sci. 106: 683–691 (1963).PubMedCrossRefGoogle Scholar
  50. 50.
    Greenberg, E.M.: Fourth stage of labor; account of physiology and clinical aspects of postpartum uterus during first post- placental hour. Amer. J. Obstet. Gynec. 52: 746–755 (1946).PubMedGoogle Scholar
  51. 51.
    Greenberg, E.M.: "Hysterin" - A hysterogenous clot-dissolving substance. Bull. N.Y. Acad. Med. 6: 397–398 (1948).Google Scholar
  52. 52.
    Harpel, P.C. and Bang, N.U.: Uterone, coagulation and fibrinolysis. Fed. Proc. 23: 240 (Abstract 836) (1964).Google Scholar
  53. 53.
    Harpel, P., Bang, N.U., Homburger, F. and Treger, A.: Plasminogen activator in mouse uterine fluid: Its suppression by estradiol and progesterone. Proc. Soc. Exp. Biol. Med. 122: 1192–1195 (1966).PubMedGoogle Scholar
  54. 54.
    Harpel, B., Homburger, F. and Treger, A.: Mouse uterine fluid plasminogen activator, acid phosphatase, and contraceptive hormones. Amer. J. Physiol. 215: 928–931 (1968).PubMedGoogle Scholar
  55. 55.
    Brakman, P., Albrechtsen, O.K. and Astrup, T.: Blood coagulation, fibrinolysis, and contraceptive hormones. J. Amer. Med. Ass. 199: 69–74 (1967).CrossRefGoogle Scholar
  56. 56.
    Beller, F.K. and Weiss, G.: The fibrinolytic enzyme system in cervical mucus. Fertil. and Steril. 17: 654–662 (1966).Google Scholar
  57. 57.
    Henrichsen, J. and Astrup, T.: Fibrinol3rtically active rat vaginal epithelial cells. J. Path. Bact. 93: 706–710 (1967).PubMedCrossRefGoogle Scholar
  58. 58.
    Tympanidis, K., King, A.E. and Astrup, T.: Fibrinolytically active cells in human vaginal smears. Amer. J. Obstet. Gynec. 100: 185–193 (1968).Google Scholar
  59. 59.
    Gardner, W.U.: Sensitivity of the vagina to estrogen: Genetic and transmitted differences. Ann. N.Y. Acad. Sci. 83: 145–159 (1959). (Monograph: The Vagina, O.V. St. Whitelock, editor).PubMedCrossRefGoogle Scholar
  60. 60.
    Peckham, B., Ladinsky, J. and Kieliofer, W.: Autoradiographic investigation of estrogen response mechanisms in rat vaginal epithelium. Amer. J. Obstet. Gynec. 87: 710–714 (1963).PubMedGoogle Scholar
  61. 61.
    Wade, N.J. and Doisy, E.A.: Cornification of vaginal epithelium of ovariectomized rat produced by smearing. Proc. Soc. Exp. Biol. Med. 32: 707–709 (1935).Google Scholar
  62. 62.
    Rasmussen, J. and Albrechtsen, O.K.: Characterization of the fibrinolytic components in the human prostate. Scand. J. Clin. Lab. Invest. 12: 261–268 (1960).PubMedCrossRefGoogle Scholar
  63. 63.
    Tagnon, H.J., Whitmore, W.F. and Shulman, N.R.: Fibrinolysis in metastatic cancer of the prostate. Cancer 5: 9–12 (1952).PubMedCrossRefGoogle Scholar
  64. 64.
    Tagnon, H.J., Whitmore, W.F., Schulman, P. and Kravitz, S.C.: The significance of fibrinolysis occurring in patients with metastatic cancer of the prostate. Cancer 6: 63–67 (1953).PubMedCrossRefGoogle Scholar
  65. 65.
    Tagnon, H.J., Schulman, P., Whitmore, W.F. and Leone, L.A.: Prostatic fibrinolysin, study of a case illustrating the role in hemorrhagic diathesis of cancer of the prostate. Amer. J. Med. 15: 875–884 (1953).PubMedCrossRefGoogle Scholar
  66. 66.
    Ladehoff, A. and Rasmussen, J.: Fibrinolysis and thrombo- plastic activity in relation to hemorrhage in transvesical prostatectomy. Scand. J. Clin. Lab. Invest. 13: 231–244 (1961).PubMedCrossRefGoogle Scholar
  67. 67.
    Todd, A.S.: Fibrinolysis autographs. Nature 181: 495–496 (1958).PubMedCrossRefGoogle Scholar
  68. 68.
    Albrechtsen, O.K.: The fibrinolytic agents in saline extracts of human tissues. Scand. J. Clin. Lab. Invest. 10: 91–96 (1958).PubMedCrossRefGoogle Scholar
  69. 69.
    Rasmussen, J. and Albrechtsen, O.K.: Fibrinolytic activity in human seminal plasma. Fertil. and Steril. 11: 264–277 (1960).Google Scholar
  70. 70.
    Röhl, L.: Prostatic hyperplasia and carcinoma studied with tissue culture technique. Acta Chir. Scand. Supplementum 240: 1–88 (1959).Google Scholar
  71. 71.
    Källén, B. and Röhl, L.: The fibrinolytic activity of human hyperplastic prostate studied in tissue culture. Acta Chir. Scand. 118: 240–245 (1960).PubMedGoogle Scholar
  72. 72.
    Bengmark, S., Ingemanson, B. and Källén, B.: Endocrine dependence of rat prostatic tissue in vitro. Acta Endocr. (Kbh.) 30: 459–471 (1959).Google Scholar
  73. 73.
    Lasnitzki, I., Dingle, J.T. and Adams, S.: The effect of steroid hormones on lysosomal activity of rat ventral prostate gland in culture. Exp. Cell Res. 43: 120–130 (1965).CrossRefGoogle Scholar
  74. 74.
    Muggins, C. and Neal, W.: Coagulation and liquefaction of semen. J. Exp. Med. 76: 527–541 (1942).CrossRefGoogle Scholar
  75. 75.
    von Kaulla, K.N. and Shettles, L.B.: Relationship between human seminal fluid and the fibrinolytic system. Proc. Soc. Exp. Biol. Med. 83: 692–694 (1953).Google Scholar
  76. 76.
    Lundquist, F., Thorsteinsson, T. and Buus, O.: Purification and properties of some enzymes in human seminal plasma. Biochem. J. 59: 69–79 (1955).PubMedGoogle Scholar
  77. 77.
    Harvey, C.: Fibrinolysin in human semen. Proc. Soc. Study Fertil. 1: 11 (1949).Google Scholar
  78. 78.
    Ying, S.H., Day, E., Whitmore, W.F. and Tagnon, H.J.: Fibrinolytic activity in human prostatic fluid and semen. Fertil. and Steril.7: 80–87 (1956).Google Scholar
  79. 79.
    von Kaulla, K.N. and Shettles, L.B.: Beitrag zur Kenntnis des proteolytischen Fermentsystems im menschlichen sperma- plasma, mucus cervicalis, Tubarschleirahaut und Liquor folliculi. Klin. Wschr. 32: 468–472 (1954).CrossRefGoogle Scholar
  80. 80.
    Price, D. and Williams-Ashman, H.G.: The accessory reproductive glands of mammals. In Sex and Internal Secretions, W.C. Young (editor). The Williams and Wilkins Co., Baltimore, 1961, pp. 366–448.Google Scholar
  81. 81.
    Astrup, T., Henrichsen, J. and Kwaan, H.C.: Protease content and fibrinolytic activity of human leukocytes. Blood 29: 134–138 (1967).PubMedGoogle Scholar
  82. 82.
    Buruiana, L.M.: Sur l’activite hyaluronidasique et trypsinique du sperme. Naturwissenschaften 43: 523 (1956).CrossRefGoogle Scholar
  83. 83.
    Tympanidis K. and Astrup, T.: Fibrinolytic activity of rat, rabbit and human sperm cells. Proc. Soc. Exp. Biol. Med. 129: 179–182 (1968).PubMedGoogle Scholar
  84. 84.
    Kirton, K.T. and Hafs, H.D.: Sperm capacitation by uterine fluid or beta-amylase in vitro. Science 150: 618–619 (1965).PubMedCrossRefGoogle Scholar
  85. 85.
    Noyes, R.W., Walton, A. and Adams, C.E.: Capacitation of rabbit spermatozoa. J. Endocr. 17: 374–380 (1958).PubMedCrossRefGoogle Scholar
  86. 86.
    Hamner, Ch.E., Jones, J.P. and Sojka, N.J.: Influence of the hormonal state of the female on the fertilizing capacity of the rabbit spermatozoa. Fertil. and Steril. 19: 137–143 (1968).Google Scholar
  87. 87.
    Wettemann, R.P. and Hafs, H.D.: Sperm capacitation in estrous rabbits injected with HCG or LH. Fed. Proc. 27: 567 (Abstract 1975) (1968).Google Scholar
  88. 88.
    Weinman, D.E. and Williams, W.L.: Mechanism of capacitation of rabbit spermatozoa. Nature 203: 423–424 (1964).PubMedCrossRefGoogle Scholar
  89. 89.
    Pinsker, M.G. and Williams, W.L.: Spermatozoan decapacitation factor (DF) in human seminal plasma. Proc. Soc. Exp. Biol. Med. 129: 446–448 (1968).PubMedGoogle Scholar
  90. 90.
    Melander, B., Gliniecki, G., Granstrand, B. and Hanshoff, G.: Biochemistry and toxicology of amikapron, the antifibrino- lytically active isomer of AMGHA (A comparative study with epsilon-aminocaproic acid). Acta Pharmacol. (Kbh.) 22: 340–352 (1965).CrossRefGoogle Scholar
  91. 91.
    Brakman, P.: The fibrinolytic system in human blood during pregnancy. Amer. J. Obstet. Gynec. 94:14–20 (1966).PubMedGoogle Scholar
  92. 92.
    Brakman, P.: Fibrinolysis in blood during pregnancy and hormone treatment. In Blood Coagulation, Thrombosis, and Female Hormones-Transactions of a Symposium, T. Astrup and I.S. Wright (editors), James F. Mitchell Foundation, Washington, D.C., 1967, pp. 27–32.Google Scholar

Copyright information

© Plenum Press, New York 1969

Authors and Affiliations

  • Tage Astrup
    • 1
  1. 1.Institute for Medical ResearchThe James F. Mitchell FoundationUSA

Personalised recommendations