Advertisement

Coronaviruses pp 509-515 | Cite as

Identification of Epitopes of Immunological Importance on the Peplomer of Porcine Transmissible Gastroenteritis Virus

  • David J. Garwes
  • Fiona Stewart
  • Carole J. Elleman
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 218)

Abstract

Transmissible gastroenteritis virus (TGEV) causes serious economic losses in the pig industry in many parts of the world. Immunity in young piglets relies on passive transfer of antibodies in maternal milk. Although, over the past 40 years, there has been a great deal of effort aimed at producing an efficient vaccine in many laboratories, it has proved difficult to achieve lactogenic immunity with inactivated or attenuated vaccines. There are two aspects to the problem; identification of the most appropriate antigen and the method for its delivery to the sow in such a way as to stimulate lymphocyte migration to the mammary gland.

Keywords

Ascitic Fluid Bovine Respiratory Syncytial Virus Transmissible Gastroenteritis Virus Competition Binding Assay Young Piglet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Britton, P., Garwes, D. J., Page, K. and Walmsley, J., 1987, Expression of porcine transmissible gastroenteritis virus genes in E. coli as ß-galactosidase chimaeric proteins, in: “Coronaviruses”, M. Lai, ed., Plenum Press, New York.Google Scholar
  2. Delmas, B., Gelfi, J. and Laude, H., 1986, Antigenic structure of transmissible gastroenteritis virus. II. Domains on the peplomer glycoprotein, J. gen. Virol., 67: 1405.PubMedCrossRefGoogle Scholar
  3. Garwes, D. J. and Pocock, D. H., 1975, The polypeptide structure of transmissible gastroenteritis virus, J. gen. Virol., 29: 25.PubMedCrossRefGoogle Scholar
  4. Garwes, D. J., Lucas, M. H., Higgins, D. A., Pike, B. V. and Cartwright, S. F., 1978/79, Antigenicity of structural components from porcine transmissible gastroenteritis virus, Vet. Microbiol., 3: 179.CrossRefGoogle Scholar
  5. Garwes, D. J., Bountiff, L., Millson, G. C. and Elleman. C. J., 1984, Defective replication of porcine transmissible gastroenteritis virus in a continuous cell line, in: “Molecular Biology and Pathogenesis of Coronaviruses”, P. J. M. Rottier, B. A. M. van der Zeijst, W. J. M. Spaan and M. C. Horzineck, ed., Plenum Press, New York.Google Scholar
  6. Hunter, W. M. and Greenwood, F. C, 1962, Preparation of iodine-131 labelled human growth hormone of high specific activity, Nature (London), 194: 495.CrossRefGoogle Scholar
  7. Köhler, G. and Milstein, C, 1975, Continuous culture of fused cells secreting antibody of predefined specificity, Nature (London), 256: 495.CrossRefGoogle Scholar
  8. Leammli, U.K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (London), 227: 680.CrossRefGoogle Scholar
  9. Laude, H., Chapsal, J-M., Gelfi, J., Labiau, S. and Grosclaude, J., 1986, Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins, J. gen. Virol., 67: 119.PubMedCrossRefGoogle Scholar
  10. Pocock, D. H. and Garwes, D. J., 1975, The influence of pH on the growth and stability of transmissible gastroenteritis virus in vitro, Arch. Virol., 29: 239.CrossRefGoogle Scholar
  11. Stanker, L. H., Vanderlaan, M. and Juarez-Salinas, H., 1985, One-step purification of mouse monoclonal antibodies from ascitic fluid by hydroxylapatite chroraatography, J. immuno1.Methods, 76: 157.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • David J. Garwes
    • 1
  • Fiona Stewart
    • 1
  • Carole J. Elleman
    • 1
  1. 1.AFRC Institute for Animal Disease ResearchCompton, Newbury, Berks.UK

Personalised recommendations