Cytogenetic Surveillance of Industrial Populations

  • D. Jack Kilian
  • Dante Picciano
Part of the Chemical Mutagens book series


It is difficult to demonstrate the precise etiology of chromosomal damage in man because of the great variety and environmental ubiquity of the agents—drugs, chemicals, viruses, and physical forces—known or suspected to cause chromosomal breakage and consequent aberrations. While the researcher has findings available from a vast array of tests, ranging from in vitro bacterial experiments and sophisticated chemical studies to large-scale utilization of laboratory animals, valid extrapolation of these findings to man is often impossible. Even the demonstration of experimentally mutagenic compounds, or their metabolites, to be present in human tissue does not give conclusive evidence of either damage or damage-repair. Specifically human findings are available from a limited number of accidental or clinical exposures to chromosome-breaking, or clastogenic,(1) agents, but these data are conflicting, fragmentary, and difficult to approximate to the workaday world.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. W. Shaw, Human chromosome damage by chemical agents, Ann. Rev. Med. 21, 409–432 (1970).PubMedCrossRefGoogle Scholar
  2. 2.
    W. M. Court Brown, P. A. Jacobs, and I. M. Tough, in “Human Radiation Cytogenetics” (H. J. Evans, W. M. Court Brown, and A. S. McLean, eds.), pp. 115–121, North-Holland Publishing Co., Amsterdam (1967).Google Scholar
  3. 3.
    H. A. Lubs and F. H. Ruddle, Chromosomal abnormalities in the human population: Estimation of rates based on New Haven newborn study, Science 169, 495–497 (1970).PubMedCrossRefGoogle Scholar
  4. 4.
    P. S. Moorhead, P. C. Nowell, W. J. Mellman, D. M. Bauips, and D. A. Hungerford, Chromosome preparations of leukocytes cultured from human peripheral blood, Exp. Cell Res. 20,613–616 (1960).PubMedCrossRefGoogle Scholar
  5. 5.
    B. E. Tolby and F. Hecht, Human chromosome breakage: Microscopy versus photomicroscopy, Ann. Genet. 11, 169–170 (1968).PubMedGoogle Scholar
  6. 6.
    D. E. Lea, “Actions of Radiations on Living Cells,” Cambridge University Press (1962).Google Scholar
  7. 7.
    K. E. Buckton and H. J. Evans, “Methods for the Analysis of Human Chromosome Aberrations,” World Health Organization, Geneva (1973).Google Scholar
  8. 8.
    R. Turpin and J. Lejeune, “Human Afflictions and Chromosomal Aberrations,” Pergamon Press, pp. 29–30, New York (1969).Google Scholar
  9. 9.
    P. L. Viola, A. Bigotti, and A. Caputo, Oncogenic response of rat skin, lungs, and bones to vinyl chloride, Cancer Res. 31, (1971).Google Scholar
  10. 10.
    C. Maltoni and C. Lefemine, Carcinogenicity to bioassays of vinyl chloride. I. Research plan and early results. Environ. Res. 7, 387–405 (1974).CrossRefGoogle Scholar
  11. 11.
    J. L. Creech and M. N. Johnson, Angiosarcoma of the liver in the manufacture of Polyvinylchloride, J. Occup. Med. 16, 150–151 (1974).PubMedGoogle Scholar
  12. 12.
    U. Rannug, A. Johansson, C. Ramel, and C. A. Wachtmeister, The mutagenicity of vinyl chloride after metabolic activation, Ambio 3, 194–197 (1974).Google Scholar
  13. 13.
    C. Malaveille, H. Bartsch, A. Barbin, A. M. Camus, R. Montesano, A. Croisy, and P. Jacquignon, Mutagenicity of vinyl chloride, chloroethylene oxide, chloroacetaldehyde and chloroethanol, Biochem. Biophys. Res. Commun. 63, 363–370 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    H. Bartsch, C. Malaveille, and R. Montesano, Human, rat and mouse liver-mediated mutagenicity of vinyl chloride in S. typhimurium strains, Int. J. Cancer 15, 429–437 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Bartsch, C. Malaveille, R. Montesano, and T. Lorenzo, Tissue-mediated mutagenicity of vinylidine chloride and 2-chlorobutadiene in Salmonella typhimurium. Nature 255, 641–643 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    F. Funes-Cravioto, B. Lambert, J. Lindsten, L. Ehrenberg, A. T. Natarajan, and S Osterman-Golkar, Chromosome aberrations in workers exposed to vinyl chloride, Lancet 1, 459 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Ducatman, K. Hirschhorn, and I. J. Selikoff, Vinyl chloride exposure and human chromosome aberrations, Mutat. Res. 31, 163–168 (1975).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Fleig and A. M. Thiess, Chromosome analysis after vinyl chloride exposure, Arbeits- med Sozialmed. Praeventivmed 9, 280–283 (1974).Google Scholar
  19. 19.
    D. J. Kilian, D. J. Picciano, and C. B. Jacobson, Industrial monitoring: A cytogenetic approach, Ann. N. Y. Acad. Sci. 269, 4–11 (1975).PubMedCrossRefGoogle Scholar
  20. 20.
    P. C. Nowell and D. A. Hungerford, Chromosome studies on normal and leukaemic human leukocytes, J. Nat. Cancer Inst. 25, 85–109 (1960).PubMedGoogle Scholar
  21. 21.
    J. Vaughan, Bone disease induced by radiation, Int. Rev. Exp. Pathol. 1, 243–396 (1962).PubMedGoogle Scholar
  22. 22.
    A. D. Bloom, Y. Nakagome, A. A. Awa, and S. Neriishi, Chromosome aberrations and malignant disease among A-bomb survivors, Am. J. Public Health 60, 641–644 (1970).Google Scholar
  23. 23.
    K. E. Buckton, P. A. Jacobs, W. M. Court Brown, and R. Doll, A study of the chromosome damage persisting after X-ray therapy for ankylosing spondylitis. Lancet 2, 676–682 (1962).PubMedCrossRefGoogle Scholar
  24. 24.
    Committee 17, Environmental mutagenic hazards. Science 187, 503–514 (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • D. Jack Kilian
    • 1
  • Dante Picciano
    • 1
  1. 1.Department of Industrial Medicine and Biomedical ResearchDow Chemical U.S.A. Texas DivisionFreeportUSA

Personalised recommendations