Advertisement

Atmospheric Mutagens

  • Lawrence Fishbein
Part of the Chemical Mutagens book series

Abstract

There is apparent general agreement that man has always been exposed to toxic agents, including potentially mutagenic substances, naturally present in the environment. However, striking advances in science and technology (primarily in the last three decades) have added new dimensions to his exposure to additional chemical hazards, and today, unlike earlier eras, the fraction of the total population exposed to chemical toxicants can be very large indeed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. W. Miller and C. G. Berg., eds., “Chemical Fallout,” C. E. Thomas, Springfield, III. (1969).Google Scholar
  2. 2.
    A. L. Hammond, Chemical Pollution: Polychlorinated Biphenyls, Science 175, 175 (1972).Google Scholar
  3. 3.
    P. C. Blokker, Recent Air Pollution Problems, in “Environmental Quality and Safety” (F. Coulston and F. Korte, eds.), Vol. 2, pp. 38–46, Georg Thieme, Stuttgart (1973).Google Scholar
  4. 4.
    Swedish Secretariat, Sulphur polution across national boundaries. Ambio 1, 15–20 (1972).Google Scholar
  5. 5.
    H. Babich and G. Stotzky, Air pollution and microbial ecology, Crit. Rev. Environ. Controls, 129–152 (1973).Google Scholar
  6. 6.
    W. H. Fischer, Atmospheric chemistry: Trace gases and particulates. Sci. Total Environ. 1, 314–319 (1972).Google Scholar
  7. 7.
    F. J. Hendel, Aerothermochemistry of the terrestrial atmosphere, Crit. Rev. Environ. Controls, 129–152 (1973).Google Scholar
  8. 8.
    H. Israel and G. W. Israel, “Trace Elements in the Atmosphere,” Ann Arbor Science, Ann Arbor, Michigan (1974).Google Scholar
  9. 9.
    R. E. Waller, Acid droplets in town air, Int. J. Air Water Pollut. 7 773–775 (1963).Google Scholar
  10. 10.
    M. Corn and L. De Maio, Sulfate particulates: Size distribution in Pittsburgh air, Science 143, 803–804 (1964).PubMedGoogle Scholar
  11. 11.
    E. Robinson and R. C. Robbins, in “Global Effects of Environmental Pollution” (F. Singer, ed.), p. 50, Springer Verlag, New York (1970).Google Scholar
  12. 12.
    E. Robinson and R. C. Robbins, Sources, Abundance and Fate of Gaseous Atmospheric Pollutants, Final Report on SRI Project PR-6755, American Petroleum Institute, New York, Feb. 1967.Google Scholar
  13. 13.
    R. S. Berry and P. A. Lehman, Aerochemistry of air pollution, Ann. Rev. Phys. Chem. 22, 47–84 (1971).Google Scholar
  14. 14.
    Air Pollution By Sulfur Oxides, Staff Rep., Feb. 1971, National Industrial Pollution Control Council, U.S. Govt. Printing Office (1971).Google Scholar
  15. 15.
    Sulfur Oxide Pollution Control, Federal Research and Development Planning and Programming, 1968–1972, NAPCA, April (1968).Google Scholar
  16. 16.
    Air Quality Criteria For Sulfur Oxides, U.S. Department of Health, Education, and Welfare, NAPCA, January (1969).Google Scholar
  17. 17.
    R. A. Cox and S. A. Penkett, Photo-oxidation of atmospheric SO2, Nature 229, 487Google Scholar
  18. 18.
    Scientists puzzle over acid rain, Chem. Eng. News 53, 19–20 (1975).Google Scholar
  19. 19.
    Sulphur pollution across national boundaries,Ambio, 15–20 (1972).Google Scholar
  20. 20.
    P. Urone, H. Lutsep, C. M. Noyes, and J. F. Parcher, Static studies of sulfur dioxide reactions in air. Environ. Sci. Technol. 2, 611–618 (1968).Google Scholar
  21. 21.
    D. H. F. Atkins, R. A. Cox, and E. J. Eggleton, Photochemical ozone and sulfuric acid aerosol formation in the atmosphere over Southern England, Nature 235, 372–374Google Scholar
  22. 22.
    B. M. Smith, J. Wagman, and B. R. Fish, Interaction of airborne particles with gases. Environ. Sci. Technol. 3, 558–563 (1969).Google Scholar
  23. 23.
    H. A. C. Mckay, The atmospheric oxidation of sulfur dioxide in water droplets in presence of ammonia, Atmos. Environ. 5, 7 (1971).Google Scholar
  24. 24.
    D. P. Rail, Review of the health effects of sulfur oxides. Environ. Health Persp. 8, 97–121 (1974).Google Scholar
  25. 25.
    M. O. Amdur, 1974 Cummings Memorial Lecture—The Long Road from Donora, Am. J. Ind. Hyg. 35, 589–597 (1974).Google Scholar
  26. 26.
    NAPCA, Air Quality Criteria for Sulfur Oxides, Publ. AP-50, U.S. Govt. Printing Office, Washington, D.C. (1970).Google Scholar
  27. 27.
    M. O. Amdur, Toxicological appraisal of particulate matter, oxides of sulfur and sulfuric acid, J. Air Pollut. Control Assoc. 19, 638 (1969).PubMedGoogle Scholar
  28. 28.
    F. Mukai, I. Hawryluk, and R. Shapiro, The mutagenic specificity of sodium bisulfite, Biochem. Biophys. Res. Commun. 39, 983–988 (1970).PubMedGoogle Scholar
  29. 29.
    H. Hayatsu and A. Miura, The mutagenic action of sodium bisulfite, Biochem. Biophys. Res. Commun. 39, 156–160 (1970).PubMedGoogle Scholar
  30. 30.
    G. A. Summers and J. W. Drake, Bisulfite mutagenesis in bacteriophage T4, Genetics 68, 603–607 (1971).PubMedGoogle Scholar
  31. 31.
    E. Freese, On the moleuclar explanation of spontaneous and induced mutations, Brookhaven Symp. Biol. 12, 63–73 (1959).PubMedGoogle Scholar
  32. 32.
    I. Tessman, The induction of large deletions by nitrous acid, J. Mol. Biol. 5, 442–445 (1962).PubMedGoogle Scholar
  33. 33.
    R. Shapiro, R. E. Servis, and M. Weicher, Reactions of uracil and cytosine derivatives with sodium bisulfite; A specific deamination method, J. Am. Chem. Soc. 92, 422–424Google Scholar
  34. 34.
    R. Shapiro, B. Braverman, J. B. Louis, and E. Servis, Nucleic acid reactivity and conformation. II. Reaction of cytosine and uracil with sodium bisulfite, J. Biol. Chem. 248, 4060–4064 (1973).PubMedGoogle Scholar
  35. 35.
    U. Furuichi, Y. Wataya, H. Hayatsu, and T. Ukita, Chemical modification of tRNA with bisulfite. A new method to modify isopentenyl adenosine residues, Biochem. Biophys. Res. Commun. 41, 1185–1191 (1970).PubMedGoogle Scholar
  36. 36.
    H. Hayatsu, Y. Wataya, K. Kai, and S. Iida. Reaction of sodium bisulfite with uracil, cytosine, and their derivatives, Biochemistry 9, 2858–2865 (1970).PubMedGoogle Scholar
  37. 37.
    M. Inoue, H. Hayatsu, and H. Tanooka, Concentration effect of bisulfite on the inactivation of transforming activity of DNA, Chem.-Biol. Interactions 5, 85–95 (1972).Google Scholar
  38. 38.
    H. Hayatsu, Y. Wataya, and K. Kai, The addition of sodium bisulfite to uracil and to cytosine, J. Am. Chem. Soc. 92, 724–726 (1970).PubMedGoogle Scholar
  39. 39.
    R. P. Singhal, Modification of E. Coli glutamate transfer ribonucleic acid with bisulfite, J. Biol. Chem. 246, 5848–5851 (1971).PubMedGoogle Scholar
  40. 40.
    H. Hayatsu, The oxygen-catalysed reaction between 4-thiouridine and sodium sulfite, J. Am. Chem. Soc. 91, 5693–5694 (1969).PubMedGoogle Scholar
  41. 41.
    H. Hayatsu, Y. Wataya, Y. Furuichi, and Y. Kawazoe, Reaction of bisulfite with N6-(A2-isopentenyl)-adenosine, Chemosphere 1, 75–78 (1972).Google Scholar
  42. 42.
    H. G. Zachau, Transfer ribonucleic acids, Angew. Chem. Int. Ed. 8, 711–727 (1969).Google Scholar
  43. 43.
    W. A. Pryor, Free radical pathology, Chem. Eng News 49, 34–51 (1971).Google Scholar
  44. 44.
    H. J. Cohen and I. Fridovich, Hepatic sulfite oxidase purification and properties, J. Biol. Chem. 246, 359–366 (1971).PubMedGoogle Scholar
  45. 45.
    S. H. Mudd, F. Irreverre, and L. Laster, Sulfite oxidase deficiency in man. Demonstration of the enzymatic effect. Science 156, 1599–1602 (1967).PubMedGoogle Scholar
  46. 46.
    A. H. Sparrow and L. A. Schairer, Mutagenic response of Tradescantia to treatment with X-rays, EMS, DBE, ozone, SO2, N2O and several insecticides, Mutat. Res. 26, 445 (1974).Google Scholar
  47. 47.
    R. J. Hickey, R. C. Clelland, D. E. Boyce, and E. B. Horner, Atmospheric sulfur dioxide, nitrogen dioxide and lead as mutagenic hazards to human health, Mutat. Res. 26, 445–446 (1974).Google Scholar
  48. 48.
    L. K. Schneider and G. A. Calkins, Sulfur dioxide-induced lymphocyte defects in human peripheral blood cultures,Environ. Res. 3, 473–483 (1971).Google Scholar
  49. 49.
    J. R. Thompson and D. M. Pace, The effect of sulfur dioxide upon established cell lines cultured in vitro. Can. J. Biochem. Physiol. 40, 207–217 (1962).PubMedGoogle Scholar
  50. 50.
    G. M. Jagiello, J. S. Lin, and M. B. Ducayen, SO2 and its metabolite: Effects on mammalian egg chromosomes, Environ. Res. 9, 84–93 (1975).PubMedGoogle Scholar
  51. 51.
    J. L. Hamerton, “Human Cytogenetics,” Vol. II, p. 345, Academic Press, New YorkGoogle Scholar
  52. 52.
    E. Robinson and R. C. Robbins, Gaseous nitrogen compound pollutants from urban and natural sources, J. Air Pollut. Control Assoc., 303–313 (1970).Google Scholar
  53. 53.
    U.S. Dept. of Health, Education, and Welfare, Nationwide Inventory of Air Pollutant Emissions, APCA Publication No. AP-73 (1968).Google Scholar
  54. 54.
    A. T. Rossano, Jr., “Air Pollution Control Guidebook for Management,” Environmental Science Division, E. R. A., Inc., Stanford, Connecticut. (1969).Google Scholar
  55. 55.
    D. W. Nelson and J. M. Bremmer, Gaseous products of nitrite decomposition in soils. Soil Biol. Biochem. 2, 203–208 (1970).Google Scholar
  56. 56.
    A. Adel, A Possible source of atmospheric N2, Science 103, 280–285 (1946).Google Scholar
  57. 57.
    A. Adel, Atmospheric nitrous oxide and the nitrogen cycle, Science 113, 624–627 (1951).PubMedGoogle Scholar
  58. 58.
    P. W. Arnold, Losses of nitrous oxide from soil, J. Soil Sci. 5, 116–128 (1954).Google Scholar
  59. 59.
    A. C. Stern, “Air Pollution,” 2nd ed. Vol. I Air Pollution and Its Effects, p. 694, Academic Press, New York (1968).Google Scholar
  60. 60.
    W. G. Agnew, Automotive air pollution research, Proc. Roy. Soc. London, Ser. A 307, 153 (1968).Google Scholar
  61. 61.
    L. A. Ripperton, L. Kornreich, and J. J. B. Worth, Nitrogen dioxide and nitric oxide in non-urban air, J. Air Pollut. Control. Assoc. 20, 584–588 (1970).Google Scholar
  62. 62.
    D. D. Davis, G. Smith, and G. Klauber, Trace gas analysis of power plant plumes via aircraft measurement: O3, NOx, and SO2 chemistry,Science 186, 733–736 (1974).PubMedGoogle Scholar
  63. 63.
    R. Reiter and M. Reiter, Relations between the contents of nitrate and nitrate ions in precipitations and simultaneous atmospheric processes, in, “Recent Advances in Atmospheric Electricity” (L. G. Smith, ed.), pp. 175–194, Pergamon Press, New York (1958).Google Scholar
  64. 64.
    C. E. Junge, “Air Chemistry and Radioactivity” (International Geophysics Series, Vol. 4), Academic Press, New York (1963).Google Scholar
  65. 65.
    H. W. Georgii, Oxides of nitrogen and ammonia in the atmosphere, J. Geophys. Res. 68, 3963 (1963).Google Scholar
  66. 66.
    J. P. Lodge, Jr., and J. B. Pate, Atmospheric gases and particulates. Science 153, 408–470 (1966).PubMedGoogle Scholar
  67. 67.
    E. R. Stephens, G. Freeman, and M. J. Evans, Early response of lungs to low levels of nitrogen oxide, Arch. Environ. Health 24, 160 (1972).PubMedGoogle Scholar
  68. 68.
    G. Freeman, Am. Rev. Respir. Dis., 100, 662–672 (1969).PubMedGoogle Scholar
  69. 69.
    A. R. Dowell, K. H. Kilburn, and P. C. Pratt, Short-term exposure to nitrogen dioxide: Effects on pulmonary ultrastructure, compliance and the surfactant system, Arch. Intern. Med. 128, 74 (1971).PubMedGoogle Scholar
  70. 70.
    T. R. Lewis, W.J. Moorman, Y. Y. Yang, and J. F. Stara, Long-term exposure to auto exhaust and other pollutant mixtures. Arch. Environ. Health 29, 102–106 (1974).PubMedGoogle Scholar
  71. 71.
    H. Stupfel, M. Magnier, F. Romary, M. H. Tran, andj. P. Moutet, Lifelong exposure of SPF-rats to automotive exhaust gas, Arch. Environ. Health 26, 264–269 (1973).PubMedGoogle Scholar
  72. 72.
    The air we breath, Food Cosmet. Toxicol. 8, 218–222 (1970).Google Scholar
  73. 73.
    D. H. Fine, F. Rufeh, D. Lieb, and S. S. Epstein, A possible nitrogen oxidenitrosamine-cancerlink. Bull. Environ. Contam. Toxicol. 11, 18–19 (1974).PubMedGoogle Scholar
  74. 74.
    C. Bokhoven and H. J. Niessen, Amounts of oxides of nitrogen and carbon monoxide and cigarette smoke with and without inhalation. Nature 192, 458–459 (1961).PubMedGoogle Scholar
  75. 75.
    G. B. Neurath, in “N-Nitroso Compound Analysis and Formation” (P. Bogovski, R. Preussmann, and E. A. Walker, eds.), pp. 134–136, Int. Agency for Research on Cancer, Lyon (1972).Google Scholar
  76. 76.
    A. Ayanaba and M. Alexander, Microbial formation of nitrosamines in vitro, Appl. Microbiol. 25, 862 (1973).Google Scholar
  77. 77.
    A. Ayanaba, W. Verstraete, and M. Alexander, Formation of dimethylnitrosamine, a carcinogen and mutagen, in soils treated with nitrogen compounds. Soil. Sci. Soc. Am. Proc. 37, 565 (1973).Google Scholar
  78. 78.
    H. B. Strack, E. B. Freese, and E. Freese, Comparison of mutation and inactivation rates induced in bacteriophage and transforming DNA by various mutagens, Mutat. 1, 10 (1964).Google Scholar
  79. 79.
    E. E. Horn and R. M. Herriot, The mutagenic action of nitrous acid on “single-stranded” (denature) Hemophilus transforming DNA, Proc. Nat. Acad. Sci. U.S.A. 48, 1409 (1962).Google Scholar
  80. 80.
    S. E. Bresler, V. L. Kahnin, and D. A. Perumov, Inactivation and mutagenesis of isolated DNA. IV. Possibility of integration of lethal damage into the chromosome of B. Subtilis during transformation, Mutat. Res. 5, 329 (1968).PubMedGoogle Scholar
  81. 81.
    F. Kaudewitz, Production of bacterial mutants with nitrous acid, Nature 183, 1829 (1959).PubMedGoogle Scholar
  82. 82.
    W. G. Verly, H. Barbason, J. Dusart, and A. Petispas-Dewandre, A comparative study on the action of ethyl methane sulfonate and HNO2 on the mutation to streptomycin resistance oi E. coli K12,Biochim. Biophys. Acta 145, 752–762 (1967).PubMedGoogle Scholar
  83. 83.
    A Reisenstart and J. L. Rosner, Chemically induced reversions in the Cys-C-region of Salmonella typhimurium. Genetics 49, 343–355 (1964).Google Scholar
  84. 84.
    R. Rudner, Mutation as an error in base pairing. I. The mutagenicity of base analogs and their incorporation into the DNA of Salmonella typhimurium, Z. Vererbungsl. 92, 336 (1961).Google Scholar
  85. 85.
    F. J. DeSerres, H. E. Brockman, W. E. Barnett, and H. G. Kolmark, Allelic complementation among nitrous acid-induced AD-3B mutants of Neurospora crassa, Mutat. 415–424 (1967).Google Scholar
  86. 86.
    H. V. Mailing, Identification of the genetic alterations in nitrous acid induced AD-3 mutants of Neurospora crassa, Mutat. Res. 2, 320–327 (1965).Google Scholar
  87. 87.
    F. K. Zimmermann and R. Schwaier, Induction of mitotic gene conversion with nitrous acid, l-methyl-3-nitro-l-nitrosoguanidine and other alkylating agents in S. cerevisiae. Mot. Gen. Genet. 100, 63–73 (1967).Google Scholar
  88. 88.
    R. Schwaier, N. Nashed, and F. K. Zimmermann, Mutagenic specificity in the induction of karyotic versus cytoplasmic respiratory deficient mutants in yeast by nitrous acid and alkylating nitrosamides, Mol. Gen. Genet. 102, 290–300 (1968).PubMedGoogle Scholar
  89. 89.
    N. Nashed and G. Jabbur, A genetic and functional characterization of adenine mutants induced in yeast by l-nitroso-l-imidazolidone-2 and nitrous acid, Z. vererbungsl. 98, 106–110 (1966).PubMedGoogle Scholar
  90. 90.
    A. Nasim and C. H. Clarke, Nitrous acid induced mosaicism in S. Pombe, Mutat. Res. 395–402 (1965).Google Scholar
  91. 91.
    N. Loprieno, R. Guglielminetti, S. Bonatti, and A. Abbondandalo, Evaluation of the genetic alterations induced by chemical mutagens in Schizosaccharomyces pombe, Mutat. Res. 8, 65–71 (1969).PubMedGoogle Scholar
  92. 92.
    D. H. Siddiqi, Mutagenic Action of Nitrous Acid on Aspergillus nidulans. Genet. Res. 303–314 (1962).Google Scholar
  93. 93.
    W. Vielmetter and C. M. Wiedner, Mutagene und inaktiuierende wirkung salpetriger Saule auf freie partikel desphagen T2, Z. Naturforsch. 14B, 312–317 (1959).Google Scholar
  94. 94.
    I. Tessman, Mutagenesis in phages X 174 and T4 and properties of the genetic material, Virology 9, 375–385 (1959).Google Scholar
  95. 95.
    S. Benser, On the topography of the genetic fine structure, Proc. Nat. Acad. Sci. U.S.A. 47, 403–426 (1967).Google Scholar
  96. 96.
    I. Tessman, R. K. Poddar, and S. Kumar, Identification of the altered bases in mutated single-stranded DNA, in vitro mutagenesis by hydroxylamine, ethyl methane sulfonate and nitrous acid, J, Mot. Biol. 9, 352–363 (1964).Google Scholar
  97. 97.
    L. Fishbein, W. G. Flamm, and H. L. Falk, “Chemical Mutagens,” pp. 25–26, Academic Press, New York (1970).Google Scholar
  98. 98.
    J. B. Anderman and J. E. Snodgrass, Incidence and significance of polynuclear aromatic hydrocarbons in the water environment, Crit. Rev. Environ. Control 43, 69–83 (1974).Google Scholar
  99. 99.
    R. S. Vodyanik, V. A. Gubernatorova, and V. A. Livke, Controlling the quality of the purifcation of wastewaters from acetylene production, Khim. Prom. Ur. 3, 44 (1970); Chem. Abstr. 73, 112716B (1970).Google Scholar
  100. 100.
    N. P. Sheherbak, Effects of discharges from oil processing plants on pollution of soil vegetation by 3,4-benzopyrene,Hyg. Sanit. (USSR) 33, 159 (1968).Google Scholar
  101. 101.
    N. W. Skvortsova and S. N. Kimina, Atmospheric pollution by 3,4-benzopyrene in the vicinity of a timber-chemical plant, Hyg. Sanit. (USSR) 33, 159 (1968).Google Scholar
  102. 102.
    L N. Sukhoteplyi, M. Y. Shelyug, G. S. Kalinichenko, and T. V. Drozdova, Pollution of soil in an industrial city by 3,4-benzopyrene, Hyg. Sanit. (USSR) 33, 294 (1968).Google Scholar
  103. 103.
    K. P. Ershova, Studies on the content of polycyclic hydrocarbons in effluents of petrochemical industry and surface waters, Hyg. Sanit. (USSR) 36, 474 (1971).Google Scholar
  104. 104.
    L. N. Samoilovich and Y. R. Redkin, 3,4-Benzopyrene pollution of the river Sunzha caused by the petrochemical industry in Grozny, Gig. Sanit. 33, 6 (1968).PubMedGoogle Scholar
  105. 105.
    L. M. Shabad, Y. L. Cohan, A. P. Il’nitskii, A. Y. Khesina, N. P. Sheherbak, and G. A. Smirnov, The carcinogenic hydrocarbon benzo(a)pyrene in the soil, J. Nat. Cancer Inst. 47, 1179 (1971).PubMedGoogle Scholar
  106. 106.
    A. Y. Malakhina, M. I. Tilkov, and Y. K. Shaposhnikov, Paper chromatography of polynuclear aromatic hydrocarbons, Hyg Sanit. (USSR) 36, 97 (1971).Google Scholar
  107. 107.
    IARC Monographys on the Evaluation of the Carcinogenic Risk of Chemicals to Man: Certain Polycyclic Aromatic Hydrocarbons and Heterocyclic Compounds, Vol. 3, International Agency for Research on Cancer, Lyon (1973).Google Scholar
  108. 108.
    E. Sawicki et al. Am. Ind. Hyg Assoc. J. 21, 443 (1960).PubMedGoogle Scholar
  109. 109.
    J. M. Colucci and C. R. Begeman, The automotive contribution to airborne polynuclear aromatic hydrocarbons in Detroit, J. Air Pollut. Control. Assoc. 15, 113 (1965).PubMedGoogle Scholar
  110. 110.
    C. J. Conlee, P. A. Kenline, R. L. Cummins, and V. J. Konopinski, Motor vehicle exhaust at three selected sites, Arch. Environ. Health 14, 429 (1967).PubMedGoogle Scholar
  111. 111.
    L. DeMaio and M. Corn, Polynuclear aromatic hydrocarbons associated with particulates in Pittsburgh air, J. Air Pollut. Control Assoc. 16, 67 (1966).PubMedGoogle Scholar
  112. 112.
    S. S. Epstein, S. Joshi, J. Andrea, N. Mantel, E. Sawicki, T. Stanley, and E. C. Tabor, Carcinogenicity of organic particulate pollutants in urban air after administration of trace quantities to neonatal mice,Nature 212, 1305 (1966).Google Scholar
  113. 113.
    E. Sawicki, T. R. Hauser, W. C. Elbert, F. T. Fox, and J. E. Meeker, Polynuclear aromatic hydrocarbon composition of the atmosphere in some large American cities. Am. Ind. Hyg Assoc. J. 23, 137 (1962).PubMedGoogle Scholar
  114. 114.
    E. Sawicki, S. P. McPherson, T. W. Stanley, J. E. Meeker, and W. C. Elbert, Quantitative composition of the urban atmosphere in terms of polynuclear aza heterocyclic compounds and aliphatic and polynuclear aromatic hydrocarbons, Int. J. Air Water Pollut. 9, 515 (1965).Google Scholar
  115. 115.
    E. Sawicki, J. E. Meeker, and M. J. Morgan, The Quantitative composition of air pollution source effluents in terms of aza heterocyclic compounds and polynuclear aromatic hydrocarbons. Int. J. Air Water Pollut. 9, 291 (1965).Google Scholar
  116. 116.
    D. J. von Lehmden, R. P. Hangebrauck, and J. E. Meeker, Polynuclear hydrocarbon emissions from selected industrial processes, J. Air Pollut. Control Assoc. 15, 306 (1965).Google Scholar
  117. 117.
    G. Bosco, G. Barsini, and A. Grella, Nuove indagini sulla presenza di idrocarburi policiclici aromatici nel pulviscolo atmosferico del centro storico della Citta Di Siena, Arch. Environ. Health 14, 285 (1967).Google Scholar
  118. 118.
    G. Grimmer, Cancerogene kohlenwasserstoffe in der umgebung des menschen, Erdoel Kohle, Erdgas, Petrochem. 19, 578 (1966).Google Scholar
  119. 119.
    B. T. Commins and R. E. Waller, Observations from a ten year study of pollution at a site in the city of London, Atmos. Environ. 1, 49 (1967).Google Scholar
  120. 120.
    P. Stocks, B. T. Commins, and K. V. Aubrey, A Study of polycyclic hydrocarbons and trace elements in smoke in Merseyside and other northern localities, Int. J. Air Water Pollut. 4, 141 (1961).PubMedGoogle Scholar
  121. 121.
    G. J. Cleary, Measurement of polycyclic aromatic hydrocarbons in the air of Sydney using very long alumina columns for separation. Int. J. Air Water Pollut. 7, 753 (1963).Google Scholar
  122. 122.
    G. J. Cleary and J. L. Sullivan, Pollution by polycyclic aromatic hydrocarbons in the City of Sydney, Med. J. Aust. 1, 758 (1965).PubMedGoogle Scholar
  123. 123.
    C. W. Louw, The quantitative determination of benzo(a)pyrene in the air of South African cities,Am. Ind Hyg. Assoc. J. 26, 520 (1965).PubMedGoogle Scholar
  124. 124.
    H. L. Falk, P. Kotin, and I. Markul, The disappearance of carcinogens from soot in human lungs, Cancer 11, 482 (1958).PubMedGoogle Scholar
  125. 125.
    R. P. Hangebrauck, D. J. von Lehmden, and J. E. Meeker, Emissions of polynuclear hydrocarbons and other pollutants from heat-generation and incineration processes, J. Air Pollut. Control Assoc. 14, 267 (1964).PubMedGoogle Scholar
  126. 126.
    L. R. Reckner, W. E. Scott, and W. F. Biller, The composition and odor of diesel exhaust, Proc. Am. Petrol. Inst. 45, 133 (1965).Google Scholar
  127. 127.
    V. Del Vecchio, P. Valori, C. Melchiorri, and A. Grella, Aromatic hydrocarbons from gasoline engine and liquefied petroleum gas engine exhausts. Pure Appl. Chem. 24, 739 (1970).PubMedGoogle Scholar
  128. 128.
    A. Candeli, V. Mastrandrea, G. Morozzi, and S. Toccaceli, Carcinogenic air pollutants in the exhaust from a European car operating on various fuels, Atmos. Environ. 8, 693–705 (1974).PubMedGoogle Scholar
  129. 129.
    D. Hoffmann, E. Theisz, and E. L. Wynder, Studies on the carcinogenicity of gasoline exhaust, J Air Pollut. Control Assoc. 15, 162–165 (1965).PubMedGoogle Scholar
  130. 130.
    P. Kotin, H. L. Falk, and M. Thomas, Aromatic hydrocarbons. IL Presence in particulate phase of gasoline-engine exhaust and carcinogenicity of exhaust extracts. Arch. Ind. Hyg 9, 164–177 (1954).Google Scholar
  131. 131.
    M. J. Lyons, Vehicular Exhaust: Identification of further carcinogens of polycyclic aromatic hydrocarbons class, J. Cancer 13, 126–131 (1959).Google Scholar
  132. 132.
    P. Kotin and H. L. Falk, Atmospheric factors in pathogenesis of lung cancer. Adv. Cancer Res. 7,475 (1963).PubMedGoogle Scholar
  133. 133.
    E. Sawicki, Airborne carcinogens and allied compounds, Arch. Environ. Health 14, 46 (1967).PubMedGoogle Scholar
  134. 134.
    J. W. Cook, C. L. Hewett, and I. Hieger, The isolation of a cancer-producing hydrocarbon from coal tar, J. Chem. Soc., 395 (1933).Google Scholar
  135. 135.
    V. Maser, Benzo(a)pyrene in the work place atmosphere of coal and pitch coking plants, J. Occup. Med 13, 193 (1971).Google Scholar
  136. 136.
    P. J. Lawther, B. T. Commins, and R. E. Waller, A study of the concentration of polycyclic aromatic hydrocarbons in gas works retort houses, Brit. J. Ind. Med. 22, 13 (1965).Google Scholar
  137. 137.
    R. Hamm and L. Toth, Cancerogene kohlen-wasserstoffe in der aucherten fleischerzeugnissen, Med Ernähr. 11, 25 (1970).Google Scholar
  138. 138.
    A. Stefanescu and C. Stanescu, Der gefahr-dungsgrad unter einwirkung der aromatischen polynuklcaren kohlenwasserstoffe beim fabrikations prozess von russ, Z. Ges. Hyg 14, 599 (1968).Google Scholar
  139. 139.
    R. Fischer, Spektrophotometriscites verfahren zur raschen beurteilung von russen auf ihrengehalt and polycyclischen, aromatischen kohlen Wasserstoffen, Z. Anal. Chem. 249, 110 (1970).Google Scholar
  140. 140.
    Surgeon General’s Report, “Smoking and Health,” Public Health Service Puhl. No. 1103, U.S. Govt. Printing Office (1964).Google Scholar
  141. 141.
    E. L. Wynder and D. Hoffmann, “Tobacco and Tobacco Smoke: Studies in Experimental Carcinogenesis,” Academic Press, London, New York (1967).Google Scholar
  142. 142.
    H. Elmenhorst and G. Grimmer, Polycyclische kohlenwasserstoffe aus zigarettenrauchkondensat. Eine methode zur fraktionierung grosser mengen fur tierversuche, Z. Krebsforsch. 71, 66 (1968).PubMedGoogle Scholar
  143. 143.
    L Siddiqi and K. H. Wagner, Determination of 3,4-benzpyrene and 3,4-benzofluoranthene in rainwater, ground water and wheat, Chemosphere 1, 83 (1972).Google Scholar
  144. 144.
    G. A. Smirnov, The study of benz(a)pyrene content in soil and vegetation in the airfield region, Vopr. Onkol. 16, 83 (1970).PubMedGoogle Scholar
  145. 145.
    J. Zdrazil and F. Picha, The occurrence of the carcinogenic compounds 3,4-benzpyrene and arsenic in the soil, Neoplasma 13, 49 (1966).PubMedGoogle Scholar
  146. 146.
    L. M. Shabad, On the distribution and the fate of the carcinogenic hydrocarbon benz(a)pyrene [3,4-benzpyrene] in the soil, Z. Krebsforsch. 70, 204 (1968).PubMedGoogle Scholar
  147. 147.
    J. Borneff and H. Kunte, Carcinogenic substances in water and soil. XIX. Effect of waste water purification on polycyclic aromatic compounds. Arch. Hyg. Bakteriol. 151, 202 (1967).PubMedGoogle Scholar
  148. 148.
    J. Borneff and H. Kunte, Kanzerogene substanzen in wasser und boden. XVII, Arch. Hyg (Muenchen) 149, 226 (1965).Google Scholar
  149. 149.
    M. Demerec, Mutations induced by carcinogens, Brit. f. Cancer 2, 114 (1948).Google Scholar
  150. 150.
    O. G. Fahmy and M. J. Fahmy, Mutagenic properties of Benzo(a)pyrene and its methylated derivatives in relation to the molecular mechanisms of hydrocarbon carcinogenesis. Cancer Res. 33, 302–309 (1973).PubMedGoogle Scholar
  151. 151.
    G. H. Scherr, M. Fishman, and R. H. Weaver, Mutagenicity of some carcinogenic compounds for E. coli. Genetics 39, 141 (1954).Google Scholar
  152. 152.
    S. S. Epstein and H. Shafner, Chemical mutagens in the human environment. Nature 219, 285–387 (1968).Google Scholar
  153. 153.
    O. G. Fahmy and M. J. Fahmy, Mutability of specific euchromatic and heterochromatic loci with alkylating and nitroso compounds in D. melanogaster, Mutat. Res. 13, 19–34 (1971).PubMedGoogle Scholar
  154. 154.
    O. G. Fahmy and M. J. Fahmy, Mutagenic selectivity for the RNA-forming genes in relation to the carcinogenicity of alkylating agents and polycyclic aromatics, Cancer Res. 32, 550–557 (1972).PubMedGoogle Scholar
  155. 155.
    P. D. Lawley, Effects of some chemical mutagens and carcinogens on nucleic acids, Progr. Nucleic Acid Res. Mol. Biol. 5, 89–131 (1966).Google Scholar
  156. 156.
    J. Iball, The relative potency of carcinogenic compounds, Am. J. Cancer 35, 185 (1939).Google Scholar
  157. 157.
    K. Teranishi, K. Homada, and H. Watanabe, Quantitative relationship between carcinogenicity and mutagenicity of polyaromatic hydrocarbons in Salmonella typhimurium mutants, Mutat. Res. 31, 97–102 (1975).PubMedGoogle Scholar
  158. 158.
    B. N. Ames, W. E. Durston, E. Yamasaki, and F. D. Lee, Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection, Proc. Nat. Acad. Sci. (U.S.A.) 70, 2281 (1973).Google Scholar
  159. 159.
    B. N. Ames, P. Sims, and P. L. Grover, Epoxides of carcinogenic polycyclic hydrocarbons are frameshift mutagens. Science 176 47 (1972).PubMedGoogle Scholar
  160. 160.
    G. Grimmer, Cancerogene kohlenwasserstoffe in der umgebung des menschen, Dtsch. Apoth. Ztg 108, 529 (1968).Google Scholar
  161. 161.
    G. Grimmer and A. Hildebrandt, Kohlenwasserstoffe in der umgebung des menschen. I. Eine methode zur simultanen bestimmung von dreizehn polycylischen kohlenwasserstoffen, J. Chromatog 20, 89 (1965).Google Scholar
  162. 162.
    L. Kreyberg, 3,4-Benzpyrene in industrial air pollution, Brit. f. Cancer 13, 618 (1959).Google Scholar
  163. 163.
    E. K. Diehl, F. DuBreuil, and R. A. Glenn, Polynuclear hydrocarbon emissions from coal-fired installations, J. Eng. Power 89, 276 (1970).Google Scholar
  164. 164.
    E. L. Wynder and D. Hoffmann, A study of tobacco carcinogenesis. VII. The role of higher polycyclic hydrocarbons,Cancer 12, 1079 (1959).PubMedGoogle Scholar
  165. 165.
    S. Kiryu and M. Kuratsune, Polycyclic aromatic hydrocarbons in the cigarette tar produced by human smoking,Gann 57, 317 (1966).PubMedGoogle Scholar
  166. 166.
    E. L. Wynder and D. Hoffmann, Ein experimenteller beitragzur tabarrauch kanzerogenesie, Dtsch. Med. Wossenschr. 88, 623 (1963).Google Scholar
  167. 167.
    L. Van Duuren, The polynuclear aromatic hydrocarbons in cigarette-smoke condensate. II, J. Nat. Cancer Inst. 21, 623 (1958).Google Scholar
  168. 168.
    H. Elmenhorst and G. Grimmer, Polycyclische Kohlenwasserstoffe aus Zigaretten rauchen kondensat. Eine Methode zurFraktionierung grosser Mengen fur Tierversuche, Z. Krebsjorsch. 71, 66 (1968).Google Scholar
  169. 169.
    M. Demerec, Mutations in Drosophila induced by a carcinogen, Nature 159, 604 (1947).PubMedGoogle Scholar
  170. 170.
    M. Demerec, Induction of mutations in Drosophila by dibenzanthracene. Genetics 33, 337 (1948).PubMedGoogle Scholar
  171. 171.
    R. W. Barrett and E. L. Tatum, An evaluation of some carcinogens as mutagens. Cancer Res. 234 (1951).Google Scholar
  172. 172.
    R. W. Barrett and E. L. Tatum, Carcinogenic mutagens, Ann. N.Y. Acad. Sci. 71, 1072–1084 (1958).Google Scholar
  173. 173.
    J. G. Carr, Production of mutations in mice by 1:2:5:6-dibenzanthracene, Brit. J. Cancer 1, 152 (1947).PubMedGoogle Scholar
  174. 174.
    C. Auerbach, Tests of carcinogenic substances in relation to the production of mutations in Drosophila melanogaster, Proc. Roy. Soc. Edinburgh, Sect. B 60, 164–173 (1940).Google Scholar
  175. 175.
    E. Haberman, L. Aspiras, C. Heidelberger, P. L. Grover, and P. Sims, Mutagenicity to mammalian cells of epoxides and other derivatives of polycyclic hydrocarbons, Proc. Nat. Acad Sci. (U.S.A.) 68, 3195–3199 (1971).Google Scholar
  176. 176.
    A. P. Altshuller and J. J. Bufalini, Photo-chemical aspects of air pollution: A review, Photochem. Photobiol. 4, 97–146 (1965).Google Scholar
  177. 177.
    A. P. Altshuller, Evaluation of techniques for the determination of photochemical reactivity of organic emissions, J. Air Pollut. Control Assoc. 16, 257–260 (1966).Google Scholar
  178. 178.
    P. A. Leighton, “Photochemistry of Air Pollution,” Academic Press, New York (1961).Google Scholar
  179. 179.
    A. P. Altshuller and J. J. Bufalini, Photochemical aspects of air pollution: A review, Environ. Sci. Technol. 5, 39–64 (1971).Google Scholar
  180. 180.
    A. C. Stern, ed., “Air Pollution,” Vols. I, II, III, Academic Press, New York (1968).Google Scholar
  181. 181.
    E. R. Stephens, E. F. Darley, O. C. Taylor, and W. E. Scott, Photochemical reaction products of air pollution, Int. J. Air Pollut. 4, 79–100 (1961).Google Scholar
  182. 182.
    P. A. Leighton, Photochemical reactions in contaminated atmospheres, in “Chemical Reactions in the Lower and Upper Atmospheres,” Interscience, New York (1961).Google Scholar
  183. 183.
    E. S. Starkman, ed., “Combustion-Generated Air Pollution,” Plenum Press, New York (1971).Google Scholar
  184. 184.
    K. I. Campbell, G. L. Clarke, L. V. Emik, and R. L. Plata, The atmospheric contaminant peroxyacetyl nitrate. Arch. Environ. Health 15, 739-744 (1960).Google Scholar
  185. 185.
    K. I. Campbell, L. O. Emik, G. L. Clarke, and R. C. Plata, Inhalation toxicity of peroxyacetyl nitrate,Arch. Environ. Health 20, 22–27 (1970).PubMedGoogle Scholar
  186. 186.
    L. E. Smith, Peroxyacetyl nitrate inhalation. Cardiorespiratory effects. Arch. Environ. Health 10, 161 (1965).PubMedGoogle Scholar
  187. 187.
    L. S. Jaffe, Photochemical air pollutants and their effects in men and animals, Arch. Environ. Health 16, 241–255 (1968).PubMedGoogle Scholar
  188. 188.
    O. C. Taylor, Inportance of peroxyacetyl nitrate (PAN) as a phyto-toxic air pollutant, J. Air Pollut. Control Assoc. 19, 347–351 (1969).PubMedGoogle Scholar
  189. 189.
    E. F. Darley, K. A. Kettner, and E. R. Stephens, Analysis of peroxyacyl nitrates by gas chromatography with electron capture detection. Anal. Chem. 35, 589–591 (1963).Google Scholar
  190. 190.
    J. N. Pitts, H. Fuhr, J. S. Gaffney, and J. W. Peters, Chemiluminescent reactions of peroxyacetyl nitrate and ozone with triethylamine. Environ. Sci. Technol. 7, 550–552 (1973).PubMedGoogle Scholar
  191. 191.
    J. M. Heuss and W. A. Glasson, Hydrocarbon reactivity and eye irritation, Environ. Sci. Technol. 2, 1109–1116 (1968).Google Scholar
  192. 192.
    B. L. Van Duuren, Epoxides, hydroperoxides and peroxides in air pollution. Int. J. Environ. Anal. Chem. 1, 233–241 (1972).PubMedGoogle Scholar
  193. 193.
    B. L. Van Duuren, L. Langseth, B. M. Goldschmidt, and L. Orris, Carcinogenicity of epoxides, lactones and peroxy compounds. VI. Structure and carcinogenic activity, J. Nat. Cancer Inst. 39, 1217–1228 (1967).PubMedGoogle Scholar
  194. 194.
    B. L. Van Duuren, Carcinogenic epoxides, lactones and haloethers and their mode of action, Ann. N.Y. Acad. Sci. 163, 633–651 (1969).Google Scholar
  195. 195.
    L. S. Altenberg, The production of mutations in Drosophila by tertiary butyl hydroperoxide,Proc. Nat. Acad. Sci. U.S.A. 40, 1037–1040 (1940).Google Scholar
  196. 196.
    L. S. Altenberg, The effect of photoreactivative light on the mutation rate induced in Drosophila by tert-butylhydroperoxide, Genetics 43, 662–664 (1958).Google Scholar
  197. 197.
    M. R. Chevallier and D. Luzatti, Action mutagene spécifique de trois peroxydes organiques sur les mutations reverses de deux loci de E. coli 15T-9–13, Compt. Rend. 250, 1572 (1960).Google Scholar
  198. 198.
    F. H. Dickey, G. H. Cleland, and C. Lötz, The role of organic peroxides in the induction of mutations, Proc. Nat. Acad. Sci. U.S.A. 35, 581–586 (1949).Google Scholar
  199. 199.
    R. Latarjet, N. Rebeyrotte, and P. Demerseman, in “Organic Peroxides in Radiobiology” (M. Haissinsky, ed.), p. 61, Pergamon Press, Oxford (1958).Google Scholar
  200. 200.
    K. A. Jensen, I. Kirk, G. Kolmark, and M. Westergaard, Chemically induced mutations in Neurospora, Cold Spring Harbor Symp. Quant. Biol. 16, 245 (1951).Google Scholar
  201. 201.
    P. Kotin and H. L. Falk, Organic peroxides, hydrogen peroxide, epoxides and neoplasia, Radiat. Res. Suppl. 3, 193–211 (1963).Google Scholar
  202. 202.
    F. H. Sobels, Organic peroxides and mutagenic effects in Drosophila, Nature 177, (1956).Google Scholar
  203. 203.
    F. H. Sobels, Mutation tests with a formaldehyde-hydrogen peroxide mixture in Drosophila, Am. Nat. 88, 109–112 (1954).Google Scholar
  204. 204.
    P. J. Crutzen, SST’s—A threat to the earth’s ozone shield, Ambio 1, 41–51 (1972).Google Scholar
  205. 205.
    P. J. Crutzen, Estimates of possible variations in total ozone due to natural causes and human activities, Ambio 3, 201–210 (1974).Google Scholar
  206. 206.
    H. S. Johnston, Pollution of the stratosphere, Environ. Conserv. 1, 163–176 (1974).Google Scholar
  207. 207.
    H. S. Johnston, Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173, 517–522 (1971).PubMedGoogle Scholar
  208. 208.
    T. M. Donahue, The SST and ozone depletion, Science 187, 1144–1145 (1973).Google Scholar
  209. 209.
    A. J. Grobecker, “The Effects of Stratospheric Pollution by Aircraft,” Office of the Secretary of Transportation, Washington, D.C. (1974).Google Scholar
  210. 210.
    A. C. Hammond and T. H. Maugh, II, Stratospheric pollution: Multiple threats to earth’s ozone, Science 186, 335–338 (1974).PubMedGoogle Scholar
  211. 211.
    A. C. Hammond, Ozone destruction: Problem’s scope grows, its urgency recedes, Science 187, 1181–1183 (1975).PubMedGoogle Scholar
  212. 212.
    M. J. Molina and F. S. Rowland, Stratospheric sink for chlorofluoromethanes: Chlorine atom catalysed destruction of ozone, Nature 249, 810–812 (1974).Google Scholar
  213. 213.
    R. J. Cicerone, R. S. Stolarski, and S. Wallers, Stratospheric ozone destruction by man-made chlorofluoromethanes, Science 185, 1165–1167 (1972).Google Scholar
  214. 214.
    M. B. McElroy, S. C. Wofsy, J. E. Penner, and J. C. McConnell, Atmospheric ozone: Possible impact of stratospheric aviation, J. Atmos. Sci. 31, 287 (1974).Google Scholar
  215. 215.
    Environmental Studies Board, “Biological Impacts of Increased Intensities of Solar Ultraviolet Radiation,” National Academy of Sciences/National Academy of Engineering, Washington, D.C. (1973).Google Scholar
  216. 216.
    F. S. Johnson, SST’s, ozone and skin cancer, Astronaut. Aeronaut. 11, 16–21 (1973).Google Scholar
  217. 217.
    D. R. Bates and M. Nicolet, The photochemistry of atomspheric water vapor, J. Geophys. Res. 55, 189–327 (1950).Google Scholar
  218. 218.
    P. J. Crutzen, Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere, J. Geophys. Res. 76, 7311–7325 (1971).Google Scholar
  219. 219.
    R. S. Stolarski and R. J. Cicerone, Stratospheric Chlorine: A possible sink for ozone. Can. J. Chem. 52, 1610–1615 (1974).Google Scholar
  220. 220.
    S. C. Wofsy and M. B. McElroy, HOx NOx and CIOx: Their role in atmospheric photochemistry, Can. J. Chem. 52, 1582–1591 (1974).Google Scholar
  221. 221.
    P. Crutzen, A review of upper atmospheric photochemistry. Can. J. Chem. 52, 1569–1581 (1974).Google Scholar
  222. 222.
    Power plants may be major ozone source, Chem. Eng. News 52, 22–27 (1974).Google Scholar
  223. 223.
    “Air Quality Criteria for Photochemical Oxidants,” U.S. Dept. Health Education and Welfare, Washington, D.C.Google Scholar
  224. 224.
    P. E. Coffey and W. N. Stasiuk, Evidence of transport of ozone into urban areas, Environ. Sci. Technol. 9, 59–62 (1975).Google Scholar
  225. 225.
    High nonurban ozone concentrations spotted,Chem. Eng. News 52, 25 (1974).Google Scholar
  226. 226.
    H. E. Stokinger, Ozone toxicology. Arch. Environ. Hlth. 10, 719–731 (1965).Google Scholar
  227. 227.
    H. T. Freebairn, The toxicity of ozone, a constituent of smog, J. Appl. Nutr. 12, 2–13 (1959).Google Scholar
  228. 228.
    L. S. Jaffe, The biological effects of photochemical air pollutants on man and animals, Am. J. Publ. Health Nat. Health 57, 1269–1277 (1967).Google Scholar
  229. 229.
    L. S. Jaffe, The biological effects of ozone on man and animals, Am. Ind. Hyg. Assoc.J. 28, 267–277 (1967).PubMedGoogle Scholar
  230. 230.
    H. E. Stokinger, Ozone toxicity—a review of the literature through 1953, Arch. Ind. Health 9, 366–383 (1954).Google Scholar
  231. 231.
    L. D. Scheel, O. G. Dobrogorski, J. M. Mountain, J. L. Svirbely, and H. E. Stokinger, Physiologic, biochemical, immunological, and pathological changes following ozone exposure, J. Appl. Physiol. 14, 67–80 (1959).PubMedGoogle Scholar
  232. 232.
    M. Klenfield and C. P. Giel, Clinical manifestations of ozone poisoning: Report of a new source of exposure, Am. J. Med. Sci. 231, 638–643 (1956).Google Scholar
  233. 233.
    H. E. Stokinger and D. L. Coffin, Biologic effects of air pollutants, in “Air Pollution” (A. C. Stern, ed.), p. 445, Academic Press, New York (1968).Google Scholar
  234. 234.
    H. E. Stokinger, W. O. Wagner, and O. Dobrogorski, Ozone toxicity studies. III. Chronic injury to lungs of animals following exposure at a low level. Arch. Environ. Health 76, 514–522 (1957).Google Scholar
  235. 235.
    S. Werthamer, L. H. Schwarz, and J.J. Carr, Ozone induced pulmonary lesions, Arch. Environ. Health 20, 16–21 (1970).PubMedGoogle Scholar
  236. 236.
    S. Werthamer, L. H. Schwarz, and L. Sosking, Bronchial epithelial alterations and pulmonary neoplasia induced by ozone, Pathol. Microbiol. 35, 224–230 (1970).Google Scholar
  237. 237.
    Freeman, R. J. Stephens, and D. L. Coffin, Changes in dog’s lungs after long-term exposure to ozone, Arch. Environ. Health 26, 209–216 (1973).PubMedGoogle Scholar
  238. 238.
    T. R. Vaughn, Jr., W. J. Moorman, and T. R. Lewis, Cardiopulmonary effects of acute exposure to ozone in the dog, Toxicol. Appl. Pharmacol. 20, 404–411 (1971).Google Scholar
  239. 239.
    D. B. M. Scott and E. C. Lesher, Effect of ozone on survival and permeability of E. Coli,J. Bacteriol. 85, 567–576 (1943).Google Scholar
  240. 240.
    A. N. M. Nasr, Ozone poisoning in man: Clinical manifestations and differential diagnosis. A review,Clin. Toxicol. 4, 461–466 (1971).PubMedGoogle Scholar
  241. 241.
    D. B. Menzel, Toxicity of ozone, oxygen and radiation, Ann. Rev. Pharmacol. 10, 379–384 (1970).Google Scholar
  242. 242.
    J. N. Roehm, J. G. Hadley, and D. B. Menzel, Oxidation of unsaturated fatty acids by ozone and nitrogen dioxide. A common mechanism of action. Arch. Environ. Health 23, 142–148 (1971).PubMedGoogle Scholar
  243. 243.
    D. B. Menzel, Oxidation of biologically active reducing substances by ozone, Arch. Environ. Health 23, 149–153 (1971).PubMedGoogle Scholar
  244. 244.
    E. G. Trans, C. J. Lauter, E. A. B. Brown, and O. Young, Cerebral cortical metabolism after chronic exposure to ozone. Arch. Environ. Health 24, 229–232 (1972).Google Scholar
  245. 245.
    H. E. Stokinger and L. D. Scheel, Ozone toxicity: Immunochemical and tolerance-producing aspects. Arch. Environ. Health 4, 327–334 (1962).PubMedGoogle Scholar
  246. 246.
    A. Y. Pan, J. Beland, and Z. Jegier, Ozone induced arterial lesions. Arch. Environ. Health 24, 229–232 (1972).Google Scholar
  247. 247.
    R. Brinkman, H. B. Lamberts, and T. S. Veninga, Radiomimetic toxicity of ozonized air, Lancet 1, 133–136 (1964).Google Scholar
  248. 248.
    R. E. Zelac, H. L. Cromroy, W. E. Bolch, Jr., O. G. Dunavant, and H. A. Bevis Inhaled ozone as a mutagen. I. Chromosome aberrations induced in golden hamster lymphocytes,Environ. Res. 9, 262–282 (1971).Google Scholar
  249. 249.
    D. J. Hurst, D. E. Gardner, and D. L. Coffin, Effect of ozone on acid hydrolases of pulmonary alveolar macrophages, J. Reticuloendothel. Soc. 8, 288–300 (1970).PubMedGoogle Scholar
  250. 250.
    E. Goldstein, W. S. Tyler, P. D. Hoefrich, and C. Eagle, Adverse influence of ozone on pulmonary bactericidal activity of marine lung, Nature 229, 262–263 (1971).PubMedGoogle Scholar
  251. 251.
    E. J. Fairchild, Tolerance mechanisms: Determinants of lung responses to injurious agents, Arch. Environ. Health 14, 111–126 (1967).PubMedGoogle Scholar
  252. 252.
    E. J. Fairchild and S. L. Graham, Thyroid infiuence on the toxicity of respiratory irritant gases, ozone and nitrogen dioxide, J. Pharmacol. Exp. Ther. 139, 177–184 (1969).Google Scholar
  253. 253.
    R. H. Fetner, Chromosome breakage in Vicia faba by ozone. Nature 181, 504–505 (1958).Google Scholar
  254. 254.
    R. Brinkman and H. B. Lamberts, Ozone as a possible radiomimetic gas. Nature 181, 1202–1203 (1958).PubMedGoogle Scholar
  255. 255.
    W. Sachsenmaier, W. Siebs, and T. A. Tan, Wirkung von ozon auf mauseascitestumor zellen und auf huhnerfibroblasten in der gewebekultur, Z. Krebsforse hung. 67, 113–126 (1965).Google Scholar
  256. 256.
    I. Davis, The survival and mutability of E. coli in aqueous solutions of ozone, Ph.D. Thesis, University of Pennsylvania, Pa. (1959).Google Scholar
  257. 257.
    I. Davis, Microbiologic studies with ozone, mutagenesis of ozone for E. coli, USAF School of Aerospace Medicine Rept., 60–61 (1961).Google Scholar
  258. 258.
    W. A. Feder and F. Sullivan, Ozone depression of frond muhiplication and floral production in duckweed. Science 165, 1373–1374 (1969).PubMedGoogle Scholar
  259. 259.
    R. H. Fetner, Ozone-induced chromosome breakage in human cell cultures, Nature 194, 793–794 (1962).PubMedGoogle Scholar
  260. 260.
    R. H. Fetner, Mitotic inhibition induced in grasshopper neuroblasts by exposure to ozone,USAF School of Aerospace Medicine Rept., 63–69 (1963).Google Scholar
  261. 261.
    S. MacLean, A. C. Longwell, and W. J. Blogoslawski, Effects of ozone-treated seawater on the spawned, fertilized, meiotic and cleaving eggs of the commercial american oyster, Mutat. Res. 21, 283–285 (1973).PubMedGoogle Scholar
  262. 262.
    J. McLeish,Heredity, G. Suppl., 125 (1953).Google Scholar
  263. 263.
    D. M. Pace, P. A. Landolt, and B. T. Alftonomos, Effects of ozone on cells Arch. Environ. Health 18, 165–170 (1969).PubMedGoogle Scholar
  264. 264.
    R. Prat, C. Nofre, and A. Cier, Effets de I’hypochlorite de sodium, de l’ozone et des radiations ionisantes sur les constituants pyrimidiques de E. coli, Ann. Inst. Pasteur 114, 595–607 (1968).Google Scholar
  265. 265.
    R. E. Zelac, H. L. Cromroy, W. E. Boich, Jr., B. G. Dunavent, and H. A. Bevis, Inhaled ozone as a mutagen. II. Effects on the frequency of chromosome aberrations observed in irradiated Chinese hamsters. Environ. Res. 4, 325–342 (1971).PubMedGoogle Scholar
  266. 266.
    C. Hamelin and Y. S. Chung, Optimal conditions for mutagenesis by ozone in E. coli K12, Mutat. Res. 24, 271–279 (1974).PubMedGoogle Scholar
  267. 267.
    American Industrial Hygiene Association, Community air quality guides: ozone, Am. Ind Hyg. Assoc. J. 29, 299–303 (1968).Google Scholar
  268. 268.
    K. K. Vrochinskil, E. coli variability in water under the effect of ozone, Zh. Mikrobiol. Epidemiol. Immunobiol. 41, 79–84 (1964).Google Scholar
  269. 269.
    G. McConnell, D. M. Ferguson, and C. R. Pearson, Chlorinated hydrocarbons and the environment, Endeavour 34, 13–27 (1975).PubMedGoogle Scholar
  270. 270.
    J. W. Clayton, Fluorocarbon toxicity and biological action. Fluorine Chem. Rev. 1, 197–252 (1967).Google Scholar
  271. 271.
    Chemical Marketing Reporter Aug. 21 (1972).Google Scholar
  272. 272.
    American Chemical Society, Chemistry in the environment, ACS, Washington, D.C. (1973).Google Scholar
  273. 273.
    M. S. Rowland and M. J. Molina, Chlorofluromethanes in the environment. Atomic Energy Commission Rept. No. 1974–1, University of California, Irving (1974).Google Scholar
  274. 274.
    J. C. Lovelock, R. J. Maggs, and R. J. Wade, Halogenated hydrocarbons in and over the atlantic. Nature 241, 194 (1973).Google Scholar
  275. 275.
    National Resources Defense Council, Petition of concern to the consumer product safety commission, Chem. Tech., pp. 22–27, Jan. (1975).Google Scholar
  276. 276.
    U.S. Dept. of Commerce, Tariff Commission Report, 1974, U.S. Dept. of Commerce, Washington, D.C.Google Scholar
  277. 277.
    Environmentalists seek fluorocarbon ban,Chem. Eng. News 52, 14 (1974).Google Scholar
  278. 278.
    M. Sangioyanni, 1973 Aerosol product survey,Drug Cosmet. Ind., p. 43 June (1974).Google Scholar
  279. 279.
    P. P. Bemand, M. A. A. Clyne, and R.J. Watson, Reactions of chlorine oxide radicals. 4. Rate constants for the reactions of chlorine atoms, oxygen atoms, hydrogen atoms and nitric oxide with chlorine dioxide and of O2 atoms with chlorine oxide radicals, J. Chem. Soc., Faraday, Trans. 1, 69, 1356–1374 (1973).Google Scholar
  280. 280.
    C. W. Su and E. D. Goldberg, Chlorofluorocarbons in the atmosphere. Nature 245, 27 (1973).Google Scholar
  281. 281.
    P. J. Crutzen, Estimates of possible future ozone reductions from continued use of Fluoro-chloro-methanes, CF2CI2, CFCI3, Geophys. Res. Lett. 1, 205 (1974).Google Scholar
  282. 282.
    S. C. Wofsy, M. B. McElroy, and N. D. Sze, Freon consumption: Implications for atmospheric ozone, Science, Feb. (1974).Google Scholar
  283. 283.
    J. E. Lovelock, Atmospheric turbidity and CCI3F concentrations in rural southern England and southern Ireland, Atmos. Environ. 6, 917–925 (1972).PubMedGoogle Scholar
  284. 284.
    P. E. Wilkniss, J. W. Swinnerton, R. A. LaMontagne, and D. J. Bressan, Trichlorofluoromethane in the troposphere distribution and increase, 1971 to 1974, Science 187, 832–834 (1975).PubMedGoogle Scholar
  285. 285.
    R. E. Newell, G. J. Boer, and J. W. Kidson, Tellus, 26, 1 (1974).Google Scholar
  286. 286.
    P. G. Simmonds, S. L. Kerrin, J. E. Lovelock, and F. H. Shair, Distribution of atmospheric halocarbons in the air over the Los Angeles Basin, Atmos. Environ. 8, 209–216 (1974).PubMedGoogle Scholar
  287. 287.
    N. E. Hester, E. R. Stephens, and O. C. Taylor, Fluorocarbons in the Los Angeles Basin, J. Air Pollut. Control Assoc. 24, 591–595 (1974).PubMedGoogle Scholar
  288. 288.
    M. Bass, Sudden sniffing death, J. Am. Med. Assoc. 212, 2075 (1970).Google Scholar
  289. 289.
    C. F. Reinhardt, A. Azar, M. E. Maxfield, P. F. Smith, and L. S. Mullin, Cardiac arrhythmias and aerosol, “Sniffing,” Arch. Environ. Health 22, 265 (1971).PubMedGoogle Scholar
  290. 290.
    M. A. Belej and D. M. Aviado, Cardiopulmonary toxicity of propellants for aerosols, J. Clin. Pharmacol. 15, 105–115 (1975).PubMedGoogle Scholar
  291. 291.
    D. M. Aviado, Toxicity of aerosol propellants in the respiratory and circulatory systems. IX. Summary of the most toxic: trichlorofluoromethane (FC-11), Toxicology 3, 311–319 (1975).PubMedGoogle Scholar
  292. 292.
    D. M. Aviado, Toxicity of Aerosols, J. Clin. Pharmacol. 15, 86–104 (1975).PubMedGoogle Scholar
  293. 293.
    D. A. Blake and G. W. Mergner, Inhalation studies on the biotransformation and elimination of [14C]-trichlorofluoromethane and -dichlorodifluoromethane in beagles, Toxicol. Appl. Pharmacol. 30, 396–407 (1974).PubMedGoogle Scholar
  294. 294.
    S. S. Epstein, S. Joshi, J. Andrea, P. Clapp, H. Falk, and N. Mantel, Synergistic toxicity and carcinogenicity of “Freons” and piperonyl butoxide, Nature 214, 526 (1967).PubMedGoogle Scholar
  295. 295.
    V. C. Foltz and R. Fuerst, Mutation studies with Drosophila melanogaster exposed to four fluorinated hydrocarbon gases, Environ. Res. 7, 275–285 (1974).Google Scholar
  296. 296.
    W. P. Spencer and C. Stern, Experiments to test the validity of the linear R-dose/mutation frequency relation in Drosophila at low dosage, Genetics 33, 43 (1948).PubMedGoogle Scholar
  297. 297.
    D. L. Lindsley and E. H. Grell, Genetic variations of Drosophila melanogaster, Carnegie Inst. Wash., Publ. No. 627.Google Scholar
  298. 298.
    S. Garrett and R. Fuerst, Sex-linked mutations in Drosophila after exposures to various mixtures of gas atmospheres, Environ. Res. 7, 286–293 (1974).Google Scholar
  299. 299.
    J. L. Creech and M. N. Johnson, Angiosarcoma of liver in the manufacture of polyvinyl chloride, J. Occup. Med. 16, 150–151 (1974).PubMedGoogle Scholar
  300. 300.
    T. J. Haley, Vinyl chloride, how many unknown problems? J. Toxicol. Environ. Health 1, in press (1975).Google Scholar
  301. 301.
    Environmental aspects of vinyl/polyvinyl chloride, U.S. Environmental Protection Agency, Research Triangle Park, N. C., Oct. 15 (1975).Google Scholar
  302. 302.
    C. W. Heath, Jr., H. Falk, and J. L. Creech, Characteristics of cases of angiosarcoma of the liver among vinyl chloride workers in the United States, Ann. N. Y. Acad. Sci., in press.Google Scholar
  303. 303.
    “Some Anti-Thyroid and Related Substances, Nitrofurans and Industrial Chemicals,” Monograph No. 7, International Agency for Research on Cancer, Lyon (1974).Google Scholar
  304. 304.
    W. A. Cook, P. M. Giever, B. D. Dinman, and H.J. Magnuson, Occupational acroosteolysis. II. An industrial hygiene study. Arch. Environ. Health 22, 74–82 (1971).PubMedGoogle Scholar
  305. 305.
    C. E. Lange, S. Juhe, G. Stein, and G. Veltman, Die sogenannte vinylchloride-krankheit-eine berufsbedingte systemskierose? Int. Arch. Arbeitsmed. 32, 1–32 (1974).PubMedGoogle Scholar
  306. 306.
    V. S. Filatova and E. S. Gronsberg, Sanitary hygienic conditions of work in the production of polychlorvinylic tar and measures of improvement. Gig. Sanit. 22, 38–42 (1957).PubMedGoogle Scholar
  307. 307.
    C. A. argues case against zero VCM exposure limits, Eur. Chem. News, p. 24, May 24 (1974).Google Scholar
  308. 308.
    H. Kuebler, Vinyl chloride as an aerosol propellant. Aerosol Age 3, 26 (1958).Google Scholar
  309. 309.
    H. losaki, Vinyl chloride finding increased use in Japanese aerosols, Aerosol Age 3, 22 (1958).Google Scholar
  310. 310.
    Vinyl chloride, emergency suspension order concerning registrations for certain products and intent to cancel registrations, U.S. Federal Register, 39 [82], 14573–14574 (1974).Google Scholar
  311. 311.
    I. A. Dyachuk, Hygienic assessment of polyvinyl chloride tiles for covering floors in apartments. Gig Samt. 35, 91 (1970).Google Scholar
  312. 312.
    N. I. Slepak and R. V. Teplyakova, Hygiene assessment of artificial leather made of polyvinyl. Gig Samt. 29, 17 (1974).Google Scholar
  313. 313.
    B. D. Dinman, W. A. Cook, W. M. Whitehouse, H. J. Magnuson, and T. Ditcheck, Occupational acroosteolysis. I. An epidemiological study. Arch. Environ. Health 22, 74–80 (1971).PubMedGoogle Scholar
  314. 314.
    D. K. Harris and N. G. I. Adams, Acro-osteolysis occurring in men engaged in the polymerization of vinyl chloride,Brit. Med. J. 3, 712 (1967).PubMedGoogle Scholar
  315. 315.
    S. Juhe, Dtsch. Med Wochenschr. 97, 2034 (1973).Google Scholar
  316. 316.
    G. A. Puschin, Affection of the liver and bile ducts in workers engaged in the production of some types of plastics, Sov;. Med 28, 132–135 (1965).Google Scholar
  317. 317.
    C. J. Kramer and J. E. Mutchler, The correlation of clinical and environmental measurements for workers exposed to vinyl chloride. Am. Ind. Hyg. Assoc. J. 33, 19 (1972).PubMedGoogle Scholar
  318. 318.
    P. L. Viola, A. Bigotti, and A. Caputo, Oncogenic response of rat skin, lungs and bones to vinyl chloride, Cancer Res. 31, 516–519 (1971).PubMedGoogle Scholar
  319. 319.
    C. Maltoni and G. Lefemine, Carcinogenicity bioassays of vinyl chloride. 1. Research plan and early results. Environ. Res. 7, 387–405 (1974).Google Scholar
  320. 320.
    U. Rannug, A. Johansson, C. Ramel, and C. A. Wachtmeister, The Mutagenicity of vinyl chloride after metabolic activation, Ambio 3, 194–197 (1974).Google Scholar
  321. 321.
    B. K. J. Leong, H. N. MacFarland, and W. H. Reese, Induction of lung adenomas by chronic inhalation of bis(chloromethyl)ether, Arch. Environ. Health 22, 663–666 (1971).PubMedGoogle Scholar
  322. 322.
    H. Bartsch, C. Malaveille, and R. Montesano, Human, rat and mouse liver mediated mutagenicity of vinyl chloride in S. typhimurium strains. Int. J. Cancer, 15, 1975.Google Scholar
  323. 323.
    R. Göthe, C. J. Calleman, L. Ehrenberg, and C. A. Wachtmeister, Trapping with 3,4-dichlorobenzenethiol of reactive metabolites formed in vitro from the carcinogen vinyl chloride,Ambio 3, 234–236 (1974).Google Scholar
  324. 324.
    B. J. Van Duuren, Chemical mechanisms of vinyl chloride carcinogenesis, National Institute of Environmental Health Sciences Conference on Public Health Implications of Plastic Manufacture, Pinehurst, N.C., July 29–31 (1974).Google Scholar
  325. 325.
    R. J. Jaeger, E. S. Reynolds, R. B. Conolly, M. T. Moslen, S. Szabo, and S. D. Murphy, Acute hepatic injury by vinyl chloride in rats pretreated with phénobarbital. Nature 252, 724–726 (1974).PubMedGoogle Scholar
  326. 326.
    J. Daniel, Metabolism of 36Cl-labelled trichloroethylene and tetrachloroethylene in the rat, Biochem. Pharmacol. 12, 795–802 (1963).PubMedGoogle Scholar
  327. 327.
    More trouble brewing for vinyl chloride,Chem. Eng. News, Sept. 2 (1974).Google Scholar
  328. 328.
    I. Selikoff, Stillbirths arid miscarriages in wives of vinyl chloride workers studied, Env. Newsletter, 13, Aug. 15 (1974).Google Scholar
  329. 329.
    M. F. Brunelle, J. E. Dickinson, and H. J. Hamming, Effectiveness of organic solvents in photochemical smog formation. Air Pollution Control District Rept., Los Angeles, California, July (1966).Google Scholar
  330. 330.
    W. J. Hamming, Aeronautic and Space Engineering and Manufacturing Meeting, Society of Automotive Engineers, Los Angeles, California, Oct. 2–6 (1967).Google Scholar
  331. 331.
    „Profile of Air Pollution Control,” County of Los Angeles Air Pollution Control District, Los Angeles, California (1971).Google Scholar
  332. 332.
    P. G. Simmonds, S. L. Kerrin, J. E. Lovelock, and F. H. Shair, Distribution of atmospheric halocarbons in the air over the Los Angeles Basin, Atmos. Environ. 8, 209–216 (1974).PubMedGoogle Scholar
  333. 333.
    D. Lillian and H. B. Singh, Absolute determination of atmospheric halocarbons by gas phase coulometry, Chem. 46, 1060–1063 (1974).Google Scholar
  334. 334.
    J. E. Lovelock, Atmospheric halocarbons and stratospheric ozone, Nature 252, 292–294 (1974).Google Scholar
  335. 335.
    S. L. Kopczynski, Personal reference cited in A. P. Altshuller and J. J. Bufalini, Photochemical aspects of air pollution: A review, Environ. Sci. Technol., 5, 39–64 (1971).Google Scholar
  336. 336.
    R. Fabre and R. Truhaut, Contribution a I’etude de la toxicologic du trichloroethylene, Brit. J. Ind. Med. 9, 39 (1952).Google Scholar
  337. 337.
    G. Kimmerle and A. Eben, Metabolism, excretion and toxicology of trichloroethylene after inhalation. I. Experimental exposure on rats, Arch. Toxicol. 30, 115 (1973).Google Scholar
  338. 338.
    J. F. Powell, Oxide formation for trichloroethylene, Brit. J. Ind. Med. 2, 142 (1945).Google Scholar
  339. 339.
    G. G. Scansetti, G. F. Rubino, and G. Trompeo, Chronic trichloroethylene poisoning. III. Metabolism of trichloroethylene, Med. Lav., 50, 743–753 (1959).PubMedGoogle Scholar
  340. 340.
    A. Barthelmess, Mutagenic Drugs Arzneim-Forsch., 6, 157–168 (1956).Google Scholar
  341. 341.
    J. Schull, ed., “Mutations,” p. 172, Univ. of Michigan Press, Ann Arbor, Mich. (1960)Google Scholar
  342. 342.
    M. R. Garrigues, Action de la colchicine et duchloral sur la racine de Vicia faba. Rev. Cytol. Cytophysiol. Veg. 4, 261 (1940).Google Scholar
  343. 343.
    “Evaluation of Carcinogenic Rise of Chemicals to Man,” Vol. I, pp. 53–60, International Agency for Research on Cancer, Lyon (1972).Google Scholar
  344. 344.
    K. Schutz, C. Junge, R. Beck, and B. Albrecht, Studies of atmospheric N2O, J. Geophys. Res. 75, 2230–2246 (1970).Google Scholar
  345. 345.
    G. P. Warwick, Metabolism of liver carcinogens and other factors influencing liver cancer induction, in “Liver Cancer,” pp. 121–157, International Agency for Research on Cancer, Lyon (1971).Google Scholar
  346. 346.
    E. Rubin and H. Popper, Medicine (Baltimore) 46, 163 (1967).Google Scholar
  347. 347.
    M. Simler, M. Maurer, and J. C. Mandard, Cancer du foie sur cirrhose au terrachlorure de carbone, Strasbourg Med. 15, 910 (1964).PubMedGoogle Scholar
  348. 348.
    J. P. Tracey and P. Sherlock, Hepatoma following carbon tetrachloride poisoning, N.Y. State J. Med. 68, 2202 (1968).PubMedGoogle Scholar
  349. 349.
    T. F. Slater, Necrogenic action of carbon tetrachloride in the rat: A speculative mechanism based on activation. Nature 209, 36 (1966).PubMedGoogle Scholar
  350. 350.
    R. O. Recknagel, Carbon tetrachloride hepatotoxicity, Pharmacol. Rev. 19, 145 (1967).PubMedGoogle Scholar
  351. 351.
    T. C. Butler, Reduction of carbon tetrachloride in vivo and reduction of carbon tetrachloride and chloroform in vitro by tissues and tissue constituents, J. Pharmacol. Exp. Ther. 134, 311 (1961).PubMedGoogle Scholar
  352. 352.
    S. S. L. Fowler, A new metabolite of carbon tetrachloride, Brit. J. Pharmacol. 36, 181 P. (1974).Google Scholar
  353. 353.
    A. Barthelmess, Mutagenic substances in the human environment, in “Chemical Mutagenesis in Mammals and Man (F. Vogel and G. Rohrborn, eds.), pp. 69–147, Springer-Verlag, Heidelberg (1970).Google Scholar
  354. 354.
    W. F. Van Oettingen, W. C. Hueper, and W. Deichman-Gruebler, Chlorobutadiene: Its toxicity, pathology and the mechanism of its action, J. Ind. Hyg. Toxicol. 18, 240–270 (1936).Google Scholar
  355. 355.
    Industry’s problems with cancer aired, Chem. Eng. News 53, 4 (1975).Google Scholar
  356. 356.
    R. J. Jaeger, M. J. Trabulus, and S. D. Murphy, Biochemical effects of 1,1-dichloroethylene in rats: Dissociation of its hepatotoxicity from a lipoperoxidative mechanism, Toxicol. Appl. Pharmacol. 24, 457–467 (1973).PubMedGoogle Scholar
  357. 357.
    D. D. Irish, in “Industrial Hygiene and Toxicology” (F. A. Patty, ed.), 2nd ed., Vol. II, Toxicology, pp. 1305–1307, Wiley (Interscience), New York (1963).Google Scholar
  358. 358.
    J. A. Prendergast, R. A. Jones, L. J. Jenkins, and J. Siegel, Effects on experimental animals of long-term inhalation of trichloroethylene, carbon tetrachloride, 1,1,1-trichloroethane, dichlorodifluoromethane and 1,1-dichloroethylene, Toxicol. Appl. Pharmacol. 10, 270–289 (1967).PubMedGoogle Scholar
  359. 359.
    C. D. Kramer and J. E. Mutchler, The correlation of clinical and environmental measurements for workers exposed to vinyl chloride, J. Am. Ind. Hyg. Assoc. 33, 19–30 (1972).Google Scholar
  360. 360.
    “Chemical Economics Handbook,” Sect. C, Stanford Research Institute, Aug. (1972).Google Scholar
  361. 361.
    B. Berck, Occup. Health Rev. 18, 16 (1966).PubMedGoogle Scholar
  362. 362.
    B. Berck, Fumigant residues of carbon tetrachloride and ethylene dibromide in wheat, flour, bran, middlings and bread, J Agr. Food Chem. 22, 977–984 (1974).Google Scholar
  363. 363.
    T. Dumas and E. J. Bond, Bromide residues in apples fumigated with ethylene dibromide, J. Agr. Food Chem. 23, 95–98 (1975).Google Scholar
  364. 364.
    G. Brown, D. C. M. Corbett, G. A. Hide, and R. M. Webb, Bromine residues in potato and wheat crops grown in soil fumigated with methyl bromide, Pestic. Sci. 5, 25–29 (1974).Google Scholar
  365. 365.
    T. Dumas, Inorganic and organic bromine residues in foodstuffs fumigated with methyl bromide and ethylene dibromide at low temperatures, J. Agr. Food Chem. 21, 433–436 (1975).Google Scholar
  366. 366.
    Federal task force probes ozone issue, Chem. Eng. News 53, 17 (1975).Google Scholar
  367. 367.
    W. A. Olson, R. T. Habermann, E. K. Weisburger, J. M. Ward, and J. H. Weisburger, Induction of stomach cancer in rats and mice by halogenated aliphatic fumigants, J. Nat. Cancer Inst. 51, 1993–1995 (1973).PubMedGoogle Scholar
  368. 368.
    J. A. Miller and E. C. Miller, Chemical carcinogenesis: Mechanisms and approaches to its control, J. Nat. Cancer Inst. 47, X-XIV (1971).Google Scholar
  369. 369.
    H. Brem, A. B. Stein, and H. S. Rosenkranz, The mutagenicity and DNA. Modifying effects of haloalkanes, Cancer Res. 34, 2576–2579 (1974).PubMedGoogle Scholar
  370. 370.
    F. J. de Serres and H. V. Mailing, Genetic analysis of ad-3 mutants of Neurospora crassa induced by ethylene dibromide, a commonly used pesticide with high mutagenic activity. Genetics 61, 39 (1969).Google Scholar
  371. 371.
    H. V. Mailing, Ethylene dibromide: A potent pesticide with high mutagenic activity, Genetics 61, 39(1969).Google Scholar
  372. 372.
    A. H. Sparrow, L. A. Schairer, and R. Villalobos-Pietrini, Comparison of somatic mutation rates induced inTradescantia by chemical and physical mutagens, Mutat. Res. 26, 265–276 (1974).PubMedGoogle Scholar
  373. 373.
    I. Tessman, Induction of transversions and transitions by 1,1-dibromoethane, EMS Newsletter 4, 33 (1971).Google Scholar
  374. 374.
    C. E. Voogd and P. Vander Vet, Mutagenic action of ethylene halogenohydrins, Experientia 25, 85–86 (1969).PubMedGoogle Scholar
  375. 375.
    S. Rosenkranz, A. S. Carr, and H. S. Rosenkranz, 2-Haloethanols: Mutagenicity and reactivity with DNA, Mutat. Res., 26, 367–370 (1974).PubMedGoogle Scholar
  376. 376.
    “Biological Effects of Atmospheric Pollutants—Fluorides,” National Academy of Sciences, Washington, D.C. (1971).Google Scholar
  377. 377.
    K. T. Semrau, Emission of fluorides from industrial processes, J. Air Pollut. Control Assoc. 7, 92–108 (1957).Google Scholar
  378. 378.
    R. F. Abernethy and F. H. Gibson, Rare elements in coal. Bur. of Mines Rept. IC-8163, 21 (1963).Google Scholar
  379. 379.
    R. F. Abernethy and F. H. Gibson, Method for determination of fluorine in coal, Bur. of Mines Rept. RI-7054, 13 pp. (1967).Google Scholar
  380. 380.
    L. Hanslian and O. Pleichingerova, Hygienic aspects of the welding process with basic electrodes, Cesk. Hyg. 11, 96–104 (1966).Google Scholar
  381. 381.
    G. L. Waldbott and W. Oelschlager, Fluoride in the environment. Fluoride 7, 220–222 (1974).Google Scholar
  382. 382.
    C. H. Wadleigh, Wastes in relation to agriculture and forestry, U.S.D.A. Misc. Publ. No. 1065, pp. 112, U.S. Dept. of Agriculture, Washington, D.C. (1968).Google Scholar
  383. 383.
    R. S. Yunghans and T. B. McMullen, Fluoride concentrations found in NASN samples of suspended particles. Fluoride 3, 143–152 (1970).Google Scholar
  384. 384.
    W. Schneider, Daueruntersuchungen zum fluor problem in einem industriellen ballungsgebeit,Staub, 28, 13–18 (1968).Google Scholar
  385. 385.
    A. E. Martin, Measurement of fluorides, in “Fluorides and Human Health,” WHO Monograph No. 59, p. 311, World Health Organization, Geneva (1970).Google Scholar
  386. 386.
    A. H. Mohamed, H. G. Applegate, and G. D. Smith, Cytological reactions induced by sodium fluoride inAllum cepa root tip chromosomes, Can. J. Genet. Cytol. 8, 241–244 (1966).Google Scholar
  387. 387.
    A. H. Mohamed, J. D. Smith, and H. G. Applegate, Cytological effects of hydrogen fluoride on tomato chromosomes. Can. J. Genet. Cytol. 8, 575 (1966).Google Scholar
  388. 388.
    A. H. Mohamed, Cytogenetic effects of hydrogen fluoride treatment in tomato plants, J. Air Pollut. Control Assoc. 18, 395–398 (1968).Google Scholar
  389. 389.
    A. H. Mohamed, Cytogenetic effects of hydrogen fluoride upon plants. Fluoride 2, 76-84 (1969).Google Scholar
  390. 390.
    G. Jagiello and J. S. Lin, Sodium fluoride as potential mutagen in mammalian eggs. Arch. Environ. Health 29, 230–235 (1974).PubMedGoogle Scholar
  391. 391.
    D. H. Carr, Chromosome studies in selected spontaneous abortions: L Conception after oral contraceptives, Can. Med. Assoc.J. 103, 343–348 (1970).PubMedCentralPubMedGoogle Scholar
  392. 392.
    P. E. Polani, Turner’s syndrome and allied conditions, Brit. Med. Bull. 17, 200–205 (1961).PubMedGoogle Scholar
  393. 393.
    J. L. Hamerton, “Human Cytogenetics,” Vol. I, Academic Press, New York (1971).Google Scholar
  394. 394.
    D. H. Carr, Chromosomes after oral contraceptives, Lancet 2, 830–831 (1967).Google Scholar
  395. 395.
    M. M. Cohen, Two human X-autosome translocations identified by autoradiography and fluorescence. Am. J. Hum. Genet. 24, 583–597 (1972).PubMedCentralPubMedGoogle Scholar
  396. 396.
    M. F. Lyon and R. Meredith, Autosomal translocations causing male sterility and viable aneuploidy in the mouse. Cytogenetics 5, 335–341 (1966).PubMedGoogle Scholar
  397. 397.
    B. Mitchell and R. A. Gerdes, Mutagenic effects of sodium and stannous flouride upon Drosophila melanogaster. Fluoride 6, 113–117 (1973).Google Scholar
  398. 398.
    E. M. Mrak, “Report of the Secretary’s Commission on Pesticides and Their Relationship to Environmental Health,” Parts 1 and 2, U.S. Dept. of Health, Education, and Welfare, Washington, D.C. (1969).Google Scholar
  399. 399.
    E. P. Lichtenstein, Environmental factors affecting fate of pesticides, in “Degradation of Synthetic Organic Molecules in the Biosphere,” pp. 190–205, National Academy of Science (1972).Google Scholar
  400. 400.
    G. A. Wheatley, Pesticides in the atmosphere,in “Environmental Pollution of Pesticides,” C. A. Edwards (ed.). Plenum Press, London (1973).Google Scholar
  401. 401.
    P. O. Gerhadt and J. M. Witt, Proc. 12th Int. Congress Entomology, London, 1964, p. 565 (1965).Google Scholar
  402. 402.
    J. M. Cohen and C. Pinkerton, Organic pesticides in the environment, Adv. Chem. Ser., No. 60, 163 (1966).Google Scholar
  403. 403.
    G. A. Wheatley, D. W. Wright, and J. A. Hardman, The re-treatment of soils with dieldrin for the control of carrot fly, Plant Path. 9, 146 (1960).Google Scholar
  404. 404.
    G. C. Decker, W. N. Bruce, and J. H. Bigger, Accumulation or dissipation of residues resulting from the use of aldrin soils, J. Econ. Entomol. 58, 266–270 (1965).Google Scholar
  405. 405.
    R. W. Cook, Proc. Fla. State Hortic. Soc. 78, 260 (1966).Google Scholar
  406. 406.
    C. A. Edwards, Insecticide residues in soils. Residue Rev. 13, 83–132 (1966).Google Scholar
  407. 407.
    E. H. March, Residues and some effects of chlorinated hydrocarbon insecticides in biological material, Residue Rev. 9, 1 (1965).Google Scholar
  408. 408.
    C. R. Harris, W. W. Sans, and J. R. W. Miles, Exploratory studies on occurrences of organochlorine insecticide residues in agricultural soil in southwestern Ontario, J. Agr. Food Chem. 14, 398 (1966).Google Scholar
  409. 409.
    Z. Jegier, Pesticide residues in the atmosphere, Ann. N. Y. Acad. Sci. 160, 143 (1969).PubMedGoogle Scholar
  410. 410.
    E. C. Tabor, Contamination of urban air through the use of insecticides, Trans. N.Y. Acad Sci. 2, 28, 569–578 (1966).Google Scholar
  411. 411.
    K. R. Tarrant and J. O’G. Tatton, Organochlorine pesticides in rainwater in the British Isles, Nature 219, 725–727 (1968).PubMedGoogle Scholar
  412. 412.
    R. W. Risebrough, R. J. Huggett, J. J. Griffin, and E. D. Goldberg, Pesticides: Transatlantic movements in the northeast trades. Science 159, 1233–1235 (1968).PubMedGoogle Scholar
  413. 413.
    D. C. Abbott, R. B. Harrison, J. O’G. Tatton, and J. Thomson, Organochlorine pesticides in the atmosphere,Nature 211, 259–261 (1966).PubMedGoogle Scholar
  414. 414.
    G. A. Wheatley and J. A. Hardman, Indications of the presence of organochlorine insecticides in rainwater in Central England, Nature 207, 486–487 (1965).PubMedGoogle Scholar
  415. 415.
    T. J. Peterle, DDT in Antarctic Snow, Nature 224, 620 (1969).PubMedGoogle Scholar
  416. 416.
    D. G. Crosby, The fate of pesticides in the environment, Ann. Rev. Plant Physiol. 24, 467–492 (1973).Google Scholar
  417. 417.
    J. O. G. Tatton and J. H. A. Ruzicka, Organochlorine pesticides in Antarctica, Nature 215, 346–349 (1967).PubMedGoogle Scholar
  418. 418.
    S. Jensen, A. G. Johnels, M. Ollson, and G. Otterlind, DDT and PCB in marine animals from Swedish waters. Nature 224, 247 (1969).PubMedGoogle Scholar
  419. 419.
    R. W. Risebrough, P. Ricche, D. B. Peakall, S. G. Herman, and M. N. Kirven, Nature 220, 1098–1101 (1968).PubMedGoogle Scholar
  420. 420.
    A. Sodergren, B. S. Vensson, and S. Ulfstrand, DDT and PCB in south Swedish streams, Environ. Pollut. 3, 25–36 (1972).Google Scholar
  421. 421.
    G. M. Woodwell, C. M. Wurster, and P. A. Isaacson, DDT residues in an East Coast estuary: A case of biological concentration of a persistent residue. Science 156, 821 (1956).Google Scholar
  422. 422.
    M. W. Miller and G. C. Berg, eds., “Chemical Fallout,” C. C. Thomas, Springfield, 111. (1969).Google Scholar
  423. 423.
    “Chlorinated Hydrocarbons in the Marine Environment,” National Academy of Science, Washington, D.C. (1971).Google Scholar
  424. 424.
    E. P. Lichtenstein and K. R. Schull, Persistence of some chlorinated hydrocarbon insecticides as influenced by soil types, rate of application and temperature, J. Econ. Entomol. 52, 124 (1959).Google Scholar
  425. 425.
    G. M. Woodwell and F. T. Martin, Persistence of DDT in soils of heavily sprayed forest strands. Science 145, 481–483 (1964).PubMedGoogle Scholar
  426. 426.
    R. G. Nash and E. A. Woolson, Persistence of chlorinated insecticides in soils, Science 157, 924 (1967).PubMedGoogle Scholar
  427. 427.
    G. M. Woodwell, P. P. Craig, and H. A. Johnson, DDT in the biosphere: Where does Science 174, 1102 (1971).Google Scholar
  428. 428.
    C. W. Stanley, J. E. Barney, M. R. Helton, and A. R. Yobs, Measurement of atmospheric levels of pesticides, Environ. Sci. Technol. 5, 430–435 (1971).Google Scholar
  429. 429.
    H. C. Harrison, O. L. Loucks, and J. Mitchell, Systems studies of DDT transport, Science 170, 503 (1970).PubMedGoogle Scholar
  430. 430.
    J. Cramer, Model of the circulation of DDT on earth, Atmos. Environ. 7, 241–256 (1973).PubMedGoogle Scholar
  431. 431.
    L. Cory, P. Fjeld, and W. Serat, Environmental DDT and the genetics of natural populations, Nature 229, 128 (1971).PubMedGoogle Scholar
  432. 432.
    T. Dobzhansky, W. W. Anderson, and O. Pavlovsky, Evolution 20, 418 (1966).Google Scholar
  433. 433.
    T. Dobzhansky, Evolution 12, 385 (1958).Google Scholar
  434. 434.
    T. Dobzhansky, W. W. Anderson, and O. Paulovsky, Evolution 18, 164 (1964).Google Scholar
  435. 435.
    E. Vogel, Investigations on the mutagenicity of DDT and the metabolites DDE, DDD, DDOM, and DDA in Drosophila melanogaster, Mutat. Res. 16, 157–164 (1972).PubMedGoogle Scholar
  436. 436.
    J. M. Clark, Mutagenicity of DDT in mice, Drosophila melanogaster and Neurospora crassa, Aust. J. Biol. Sci. 27, 427–440 (1974).PubMedGoogle Scholar
  437. 437.
    H. Lliers, Untersuchungen zur frage der mutagenitat des kontakt insektizides DDT an Drosophila melanogaster, Naturwissenschaften 40, 293–294 (1953).Google Scholar
  438. 438.
    A. Vaarama, Experimental Studies on the influence of DDT pesticide upon plant mitosis, Hereditas 33, 191–219 (1947).Google Scholar
  439. 439.
    M. E. Wallace, Environ. Pollut. 1, 175 (1971).Google Scholar
  440. 440.
    G. A. Johnson and S. M. Jalal, DDT induced-chromosomal damage in mice,J. Hered. 64, 7–8 (1973).PubMedGoogle Scholar
  441. 441.
    S. S. Epstein and M. S. Legator, “The Mutagenicity of Pesticides,” p. 30, MIT Press, Cambridge, Mass. (1971).Google Scholar
  442. 442.
    D. W. Markaryan, The cytogenetic effect of some organochlorine insecticides on the medullary cell nuclei of mice, Genetika 2, 132–137 (1966).Google Scholar
  443. 443.
    R. H. Gray, Ultrastructural abnormalities in rat liver after exposure to DDT, J. Cell Biol. 47, 78A (1970).Google Scholar
  444. 444.
    A. C. Allison and G. R. Paton, Chromosome damage in human diploid cells following activation by lysosomal enzymes,Nature 207, 1170–1173 (1965).PubMedGoogle Scholar
  445. 445.
    S. S. Epstein and H. Shafner, Chemical mutagens in the human environment,Nature 230, 259–260 (1971).Google Scholar
  446. 446.
    W. Buselmaier, G. Rohrborn, and P. Propping, Comparative investigations on the mutagenicity of pesticides in mammalian test systems, Mutat. Res. 21, 25A (1973).Google Scholar
  447. 447.
    K. A. Palmer, S. Green, and M. S. Legator, Dominant lethal study of p,p’-DDT in Food Cosmet. Toxicol. 11, 53–62 (1973).Google Scholar
  448. 448.
    F. Kelly-Garvert and M. S. Legator, Cytogenetic and mutagenic effects of DDT and DDE in a Chinese hamster cell line,Mutat. Res., 17, 223–229 (1973).PubMedGoogle Scholar
  449. 449.
    K. A. Palmer, S. Green, and M. S. Legator, Cytogenic effects of DDT and derivatives of DDT in a cultured mammalian cell line, Toxicol. Appl. Pharmacol. 22, 355–364 (1972).PubMedGoogle Scholar
  450. 450.
    M. S. Legator, K. A. Palmer, and T. D. Adler, A collaborative study of in vivo cytogenetic analysis, Toxicol. Appl. Pharmacol. 24–32, 337 (1973).Google Scholar
  451. 451.
    R. Fahrig, Comparative mutagenicity studies with pesticides M 161–181, in “IARC Monograph No. 10, Chemical Carcinogenesis Assays” (R. Montesano and L. Tomatis, eds.), Lyon (1974).Google Scholar
  452. 452.
    L. Tomatis, V. Turusov, and N. Day, The effect of long-term exposure to DDT on CF-1 mice. Int. J. Cancer 10, 489–506 (1972).PubMedGoogle Scholar
  453. 453.
    B. Terracini, M. C. Testa, and J. R. Cabrai, The effects of long-term feeding of DDT to BALB/c mice, Int. J. Cancer 11, 747–764 (1973).PubMedGoogle Scholar
  454. 454.
    V. S. Turusov, N. Day, L. Tomatis, E. Gati, and R. T. Charles, Tumors in CF-1 mice exposed for six generations to DDT, J. Nat. Cancer Inst. 51, 983–997 (1973).PubMedGoogle Scholar
  455. 455.
    J. R. Innes, B. M. Ulland, M. G. Valerio, L. Petrucelli, L. Fishbein, R. Hart, A. J. Pallotta, R. R. Bates, H. L. Falk, J. J. Gart, M. Klein, I. Mitchell, and J. Peters, Bioassay of pesticides and industrial chemicals for tumorigenicity in mice. A preliminary note, J. Nat. Cancer Inst. 1101–1114 (1969).Google Scholar
  456. 456.
    R. Tarjan and T. Kemeny, Multigeneration studies on DDT in mice. Food Cosmet. Toxicol. 7, 215–222 (1969).PubMedGoogle Scholar
  457. 457.
    L. Tomatis, V. Turusov, R. T. Charles, M. Boicchi, and E. Gati, Liver tumours in CF-1 mice exposed for limited periods to technical DDT, Z. Krebsjorsch. 82, 25–35 (1974).Google Scholar
  458. 458.
    L. Tomatis, V. Turusov, R. T. Charles, and M. Boicchi, Effect of long-term exposure to 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene, to 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethane, and to the two chemicals combined on CF-1 mice, J. Nat. Cancer Inst. 52, 883–891 (1974).PubMedGoogle Scholar
  459. 459.
    S. S. Epstein, Environ. Mutagen Soc. Newsletter 2, 33 (1969).Google Scholar
  460. 460.
    S. S. Epstein and M. S. Legator, “The Mutagenicity of Pesticides,” p. 60, MIT Press, Cambridge, Mass. (1971).Google Scholar
  461. 461.
    S. S. Epstein, W. Bass, E. Arnold, and Y. Bishop, The mutagenicity of trimethyl phosphate in mice. Science 168, 584–586 (1970).PubMedGoogle Scholar
  462. 462.
    M. B. Slombka, Facts about No-Pest DDVP strips, Shell Chemical Co., 18 pp. (1970).Google Scholar
  463. 463.
    J. W. Gillett, J. R. Harr, F. T. Lindstrom, D. A. Mount, A. D. St. Clair, and L. J. Weber, Evaluation of human health hazards on use of dichlorvos (DDVP) especially on resin strips, Residue Rev., 44 115–150 (1972).PubMedGoogle Scholar
  464. 464.
    A. A. Green, J. Kane, and J. M. G. Grandidge, The control of Ephestia elutella using dichlorvos vapor, 147–157 (1966).Google Scholar
  465. 465.
    G. G. M. Schulten and W. Kuyken, Int. Pest Control, May/June 18 (1966).Google Scholar
  466. 466.
    K. E. Elgar, B. L. Mathews, and P. Bosio, Vapona strips in shops—Residues in foodstuffs, in “Environmental Quality and Safety” (F. Coulston and F. Korte, eds.), Vol. I, pp. 217–221, Georg Thieme Verlag, Stuttgart (1972).Google Scholar
  467. 467.
    M. Menz, H. Luetkemeier, and K. Sachsse, Long-term exposure of factory workers to dichlorvos (DDVP) insecticide. Arch. Environ. Health 28, 72–76 (1974).PubMedGoogle Scholar
  468. 468.
    G. Löfroth, Alkylation of DNA by dichlorvos, Naturwisenschajten 8, 393 (1970).Google Scholar
  469. 469.
    G. Löfroth, C. Kim, and S. Hussain, Alkylating property of 2,2-dichlorovinyl dimethyl phosphate: A disregarded hazard, EMS Newsletter 2, 21–27 (1969).Google Scholar
  470. 470.
    C. T. Bedford and J. Robinson, The alkylating properties of organophosphates, Xenobiotica 2, 307–337 (1972).PubMedGoogle Scholar
  471. 471.
    P. D. Lawley, S. A. Shah, and D. J. Orr, Methylation of nucleic acids by 2,2-dichlorovinyl dimethyl phosphate, Chem.-Biol. Interactions 171–182 (1974).Google Scholar
  472. 472.
    B. A. Bridges, R. P. Mottershead, M. H. L. Green, and W. J. H. Gray, The mutagenicity of dichlorvos and methyl methane sulphonate for E. coli WP2 and some derivatives deficient in DNA repair, Mutat. Res. 19, 295–303 (1973).PubMedGoogle Scholar
  473. 473.
    M. H. L. Green, A. S. C. Medcalf, C. F. Arlett, S. A. Harcourt, and A. R. Lehmann, DNA strand breakage caused by dichlorvos, methyl methane sulphonate, Mutat. Res. 24, 365–378 (1974).PubMedGoogle Scholar
  474. 474.
    D. Wild, Chemical induction of Streptomycin-resistant mutations in Escherichia coli— Dose and mutagenic effects of dichlorvos and methyl methane sulphonate,Mutat. Res., 19, 33–41 (1973).PubMedGoogle Scholar
  475. 475.
    G. Mohn, 5-Methyi tryptophan resistance mutations in Escherichia coli Kl2—Mutagenic activity of monofunctional alkylating agents including organophosphorus insecticides, Mutât. Res. 20, 7–15 (1973).PubMedGoogle Scholar
  476. 476.
    B. J. Dean, The mutagenic effects of organophosphorus pesticides on microorganisms, Arch. Toxikol. 30, 67–74 (1972).PubMedGoogle Scholar
  477. 477.
    K. F. Dyer and P. J. Hanna, Comparative mutagenic activity and toxicity of triethylphosphate and dichlorvos in bacteria and Drosophila, Mutat. Res. 21, 175–177 (1973).Google Scholar
  478. 478.
    C. E. Voogd, J. J. J. A. A. Jacobs, and J. J. Van Der Stel, On the mutagenic action of dichlorvos, Mutat. Res. 16, 413–416 (1972).PubMedGoogle Scholar
  479. 479.
    B. J. Dean, S. M. A. Doak, and J. Funnell, Genetic studies with dichlorvos in the host-mediated assay and in liquid medium usingSaccharomyces cerevisiae Arch. Toxikol. 30, 61–66 (1972).PubMedGoogle Scholar
  480. 480.
    R. Fahrig, Nachweis einer genetischen wirkung von organophosphorinsektiziden, Naturwissenschaften 60, 50–51 (1973).PubMedGoogle Scholar
  481. 481.
    R. Wennerberg and G. Löfroth, Formation of 7-methylguanine by dichlorvos in bacteria and mice, Chem.-Biol. Interactions, 8, 339–348 (1974).Google Scholar
  482. 482.
    J. M. Michalek and H. E. Brockman, A test of mutagenicity of Shell “No-Pest strip insecticide,” Neurospora Newsletter 14, 8 (1969).Google Scholar
  483. 483.
    B. J. Dean, The mutagenic effects of organophosphorus pesticides on microorganisms, Arch. Toxikol. 30, 67–74 (1972).PubMedGoogle Scholar
  484. 484.
    D. H. Hutson and E. C. Hoadley, The comparative metabolism of 14C-vinyl dichlorvos in animals and man. Arch. Toxikol. 30, 9–18 (1972).PubMedGoogle Scholar
  485. 485.
    B. J. Dean and E. Thorpe, Studies with dichlorvos vapor in dominant lethal mutation tests on mice, Arch. Toxikol. 30, 51–59 (1972).PubMedGoogle Scholar
  486. 486.
    B. J. Dean and E. Thorpe, Cytogenic studies of dichlorvos in mice and Chinese hamsters, Arch. Toxikol. 30, 75–85 (1972).PubMedGoogle Scholar
  487. 487.
    B. J. Dean, The effects of dichlorvos on cultured human lymphocytes, Arch. Toxikol. 30, 75–85 (1972).PubMedGoogle Scholar
  488. 488.
    J. R. Newsome, V. Norman, and C. H. Keith, Vapor phase analysis of tobacco smoke, Tobacco Sci. 9, 102–110 (1965).Google Scholar
  489. 489.
    R. L. Stenburg, R. P. Hangebrauck, D.J. von Lehmden, and A. H. Rose, Jr., Effects of high-volatile fuel on incinerator effluents, J. Air Pollut. Control Assoc. 11, 376–383 (1961).Google Scholar
  490. 490.
    R. L. Stenburg, R. R. Horsley, R. A. Herrick, and A. H. Rose, Jr., Effects of design and fuel mixture on incinerator effluents, J. Air Pollut. Control Assoc. 10, 114–120. (1960).PubMedGoogle Scholar
  491. 491.
    A. P. Altshuller, I. R. Cohen, M. E. Meyer, and A. F. Wartburg, Jr., Analysis of aliphatic aldehydes in source effluents in the atmosphere, Anal. Chim. Acta 25, 101–117. (1961).Google Scholar
  492. 492.
    K. W. Wilson, Fixation of atmospheric carbonyl compounds by sodium bisulfite, Anal. Chem. 30, 1127–1129 (1960).Google Scholar
  493. 493.
    J. M. Stuart and D. A. Smith, Degradation of epoxide resins, J. Appl. Polym. Sci. 9, 3195–3214 (1965).Google Scholar
  494. 494.
    C. J. Collins and W. R. Guild, Irreversible effects on formaldehyde on DNA, Biochim. Biophys. Acta 157, 107–113 (1968).PubMedGoogle Scholar
  495. 495.
    M. Staehelin, Reaction of tobacco mosaic virus nucleic acid with formaldehyde, Biochim. Biophys. Acta 29, 410–417 (1958).PubMedGoogle Scholar
  496. 496.
    D. L. Woodhouse, Demonstration of interaction products of adenine and adenosine phosphates with formaldehyde, Nature 192, 336–338.Google Scholar
  497. 497.
    T. Alderson, Mechanism of formaldehyde-induced mutagenesis. The uniqueness of adenyhc acid in the mediation of the mutagenic activity of formaldehyde, Nature 187, 485–489 (1960).PubMedGoogle Scholar
  498. 498.
    F. H. Sobels, Peroxides and the induction of mutations by X-ray, ultraviolet light and formaldehyde, Radiat. Res., Suppl. 3, 171–183 (1963).Google Scholar
  499. 499.
    H. Nishioka, Lethal and mutagenic action of formaldehyde in HCR+ and HCR- strains of Escherichia coli, Mutat. Res. 17, 261–265 (1973).PubMedGoogle Scholar
  500. 500.
    A. M. Poverenny, Y. A. Siomin, A. J. Saenko, and B. L Sinzinis, Possible mechanisms of lethal and mutagenic action of formaldehyde, Mutat. Res. 27, 123–126 (1975).PubMedGoogle Scholar
  501. 501.
    L. Fishbein, Degradation and residues of alkylating agents, Ann. N.Y. Acad. Sci. 163, 869–893(1969).Google Scholar
  502. 502.
    Action of ethylene oxide, glycerides and glycols on genetic mutations, Dokl. Akad Nauk SSSR 60, 469–472 (1948).Google Scholar
  503. 503.
    M. J. Bird, Chemical production of mutations in Drosophila, comparison of Techniques, J. Genet. 50, 480–485 (1952).Google Scholar
  504. 504.
    H. G. Kjïlmark and B. J. Kilbey, Kinetic studies of mutation induction by epoxides in Neurospora crassa. Genetics 101, 89–98 (1968).Google Scholar
  505. 505.
    G. Kolmark and M. Westergaard, Further studies on chemically induced reversions at the adenine locus oí Neurospora, Hereditas 39, 202–224 (1953).Google Scholar
  506. 506.
    L. Ehrenburg, A. Gustafsson, and U. Lundquist, Chemically induced mutation and sterility in barley, Acta Chem. Scand 10, 492–494 (1956).Google Scholar
  507. 507.
    A. C. Faberge, Types of chromosome aberrations induced by ethylene oxide in maize. Genetics 40, 571 (1955).Google Scholar
  508. 508.
    J. Moutschen-Dahmen, M. Moutschen-Dahmen, and L. Ehrenberg, Chromosome breaking activity of ethylene oxide and ethylenimine, Hereditas 60, 267 (1968).PubMedGoogle Scholar
  509. 509.
    A. Loveless, Heredity, 6 Suppl., 293 (1953).Google Scholar
  510. 510.
    L. Ehrenberg, K. D. Hiesche, S. Osterman-Golkar, and L Wennberg, Evaluation of genetic risks of alkylating agents: Tissue doses in the mouse from air contaminated with ethylene oxide,Mutat. Res. 24, 83–103 (1974).PubMedGoogle Scholar
  511. 511.
    M. A. Bender and P. C. Gooch, Somatic chromosome aberrations induced by human whole body irradiation: The “recuplex” criticality accident, Radiat. Res. 29, 568–582 (1966).PubMedGoogle Scholar
  512. 512.
    F. Wesley, B. Roarke, and O. Darbishire, The formation of persistent toxic chlorohydrins in foodstuffs by fumigation with ethylene oxide and with propylene oxide, J. Food Sci. 30, 1037–1042 (1965).Google Scholar
  513. 513.
    E. P. Ragelis, B. S. Fisher, B. A. Klimeck, and C.Johnson, Isolation and determination of chlorohydrins in foods fumigated with ethylene oxide or with propylene oxide, J. Assoc. Off. Anal. Chem. 51, 709–715 (1968).Google Scholar
  514. 514.
    H. S. Rosenkranz and T. J. Wlodkowski, Mutagenicity of ethylene chlorohydrin, a degradation product present in foodstuffs exposed to ethylene oxide, J. Agr. Food Chem. 22, 407–409 (1974).Google Scholar
  515. 515.
    C. E. Voogd and P. Vander Vet, Mutagenic action of ethylene halogenohydrins, Experientia 25, 85–86 (1969).PubMedGoogle Scholar
  516. 516.
    R. W. Risebrough and B. De Lappe, Accumulation of polychlorinated biphenyls in ecosystems, Environ. Health Perspect. 1, 39–45 (1972).PubMedCentralPubMedGoogle Scholar
  517. 517.
    Public Relations Dept. News Release, Monsanto Industrial Chemicals Co., St. Louis, Mo., Nov. 30 (1971).Google Scholar
  518. 518.
    L. Fishbein, Mutagens and potential mutagens in the biosphere. 1. DDT and its metabolites, polychlorinated biphenyls, chlorodioxins, polycyclic aromatic hydrocarbons, haloethers, Sci. Total Environ. 4, 305–340 (1973).Google Scholar
  519. 519.
    C. T. Nisbet and A. F. Sarafim, Rates and routes of transport of PCB’s in the environment, Environ. Health Perspec. 7, 21–38 (1972).Google Scholar
  520. 520.
    C. A. Edwards, “Persistent Pesticides in the Environment,” Chemical Rubber Co., Cleveland, Ohio (1970).Google Scholar
  521. 521.
    G. R. Harvey and W. G. Steinhauer, Atmospheric transport of polychlorobiphenyls to the North Atlantic, Atmos. Environ. 8, 777–782 (1974).PubMedGoogle Scholar
  522. 522.
    S. A. Bengtson and A. Sodergren, DDT and PCB residues in airborne fallout and animals in Iceland, Ambio 8, 84–86 (1974).Google Scholar
  523. 523.
    K. W. Moilanen and D. G. Crosby, Amer. Chem. Soc. Meeting, 165th, Dallas, Texas, April (1973).Google Scholar
  524. 524.
    T. H. Maugh, DDT: An unrecognized source of polychlorinated biphenyls. Science 180, 578–579 (1973).PubMedGoogle Scholar
  525. 525.
    L. Fishbein, Toxicity of chlorinated biphenyls, Ann. Rev. Pharmacol. 14, 139–156 (1974).Google Scholar
  526. 526.
    D. B. Peakall, J. L. Lincer, and P. E. Bloom, Embryonic mortality and chromosomal aherations caused by Aroclor 1254 in ring dives, Environ. Health Perspect. 1, 103–104 (1972).PubMedCentralPubMedGoogle Scholar
  527. 527.
    R. Hoopingarner, A. Samuel, and D. Krause, Polychlorinated biphenyl interactions with tissue culture cells. Environ. Health Perspect. 1, 155–158 (1972).PubMedCentralPubMedGoogle Scholar
  528. 528.
    M. C. Keplinger, O. E. Fancher, and J. C. Calandra, PCB Conf. Nat. Inst. Environ. Health, Rougemont, N.C., Dec. 20–21 (1971).Google Scholar
  529. 529.
    S. Green, K. A. Palmer, and E. J. Oswald, Ann. Meeting Soc. Toxicol., 12th, New York, March 18–22 (1973).Google Scholar
  530. 530.
    J. G. Vos, J. H. Koeman, H. C. Vander Maas, M. C. Ten Noever Debrauw, and H. R. De Vos, Identification and toxicological evaluation of chlorinated dibenzofuran and chlorinated naphthalene in two commercial polychlorinated biphenyls, Food Cosmet. Toxicol. 8, 625–630 (1970).PubMedGoogle Scholar
  531. 531.
    J. G. Vos and J. H. Koeman, Comparative toxicologic study with polychlorinated biphenyls in chickens with special reference to porphyria, edema formation, liver necrosis and tissue residues, Toxicol. Appl. Pharmacol. 17, 656–668 (1970).PubMedGoogle Scholar
  532. 532.
    J. G. Vos and R. B. Beems, Dermal toxicity studies of technical polychlorinated biphenyls and fractions thereof in rabbits, Toxicol. Appl. Pharmacol. 19, 612–624 (1971).Google Scholar
  533. 533.
    V.J. Schaefer, Bull. Am. Meteorol. Soc. 50, 199 (1969).Google Scholar
  534. 534.
    A. W. Hogan, Ice nuclei from direct reaction of iodine vapor with vapors from leaded gasoline, Science 158, 180–183 (1967).Google Scholar
  535. 535.
    E. Robinson and F. L. Ludwig, J. Air Pollut. Control Assoc. 17, 664 (1967).PubMedGoogle Scholar
  536. 536.
    S. S. Brar, D. M. Nelson, J. R. Kline, P. F. Gustafson, E. L. Kanabrocki, C. E. Moore, and D. M. Hattori, Instrumental analysis of trace elements present in Chicago area surface air, J. Geophys. Res. 75, 2939–2945 (1970).Google Scholar
  537. 537.
    V. J. Schaefer, Ice nuclei from automobile exhaust and iodine vapor, Science 154, 1555–1557 (1966).PubMedGoogle Scholar
  538. 538.
    S. K. Hall, Pollution and poisoning. Environ. Sci. Technol. 6, 31–35 (1972).Google Scholar
  539. 539.
    D. A. Hirschler, L. F. Gilbert, F. W. Lamb, and L. M. Niebylski, Lead compounds in automobile exhaust,Ind. Eng. Chem. 49, 1131–1142 (1957).Google Scholar
  540. 540.
    R. M. Hicks, Airborne lead as an environmental toxin, Chem.-Biol. Interactions 5, 361–390 (1972).Google Scholar
  541. 541.
    J. Ahlberg, C. Ramel, and C. A. Wachtmeister, Organolead compounds shown to be genetically active, Ambio 1, 29–31 (1972).Google Scholar
  542. 542.
    T. S. Chow and M.S. Johnstone, Lead isotopes in gasoline and aerosols of Los Angeles Basin, California,Science 147, 502–503 (1965).PubMedGoogle Scholar
  543. 543.
    Z. Jaworowski, Stable and radioactive lead in the environment and the human body, Nuci Energy Inform. Center Rev. Rep., NEIC-RRL9, 181 pp. (1967).Google Scholar
  544. 544.
    D. B. Smith, Chem. Brit. 7, 160 (1971).Google Scholar
  545. 545.
    R. Chester and J. H. Stoner, Pb in particulates from the lower atmosphere of the eastern adantic. Nature 245, 27–28 (1973).Google Scholar
  546. 546.
    J. F. Lech, D. Siemer, and R. Woodriff, Determination of lead in atmospheric particulates by furnace atomic absorption, Environ. Sci. Technol. 8, 840–844 (1974).Google Scholar
  547. 547.
    R. E. Lee, Jr., S. S. Goranson, R. E. Enrione, and G. Morgan, National air surveillance cascade impactor network. IL Size distribution measurements of trace metal compontnis, Environ. Sci. Technol. 6, 1025–1030(1972).Google Scholar
  548. 548.
    R. A. Kehoe, Toxicological appraisal of lead in relation to the tolerable concentration in the ambient air, J. Air Pollut. Control Assoc. 19, 690–703 (1969).PubMedGoogle Scholar
  549. 549.
    “Air Quality Criteria for Particulate Matter,” National Air Pollution Control Administration Pubi. No. AP-49, U.S. Dept. of Health, Education, and Welfare, (1969).Google Scholar
  550. 550.
    G. Ter Haar, Air as a source of lead in edible crops. Environ. Sci. Technol. 4, 226–229 (1970).Google Scholar
  551. 551.
    M. Bauchinger and E. Schmid, in “Arbeitsgruppe Blei,” Kommission fur Umweltgefahren, Bundesgesundheitsambt, Berlin (1970).Google Scholar
  552. 552.
    E. Schmid, M. Bauchinger, S. Pietruck, and G. Hall, Die cytogenetische Wirkung von blei in menschlichen peripheren lympocyten in vitro undin vivo, Mutat. Res. 16, 401–406 (1972).PubMedGoogle Scholar
  553. 553.
    M. Bauchinger and E. Schmid, Chromosome analysen in zellkulturen des Chinesischen hamsters nach applikation von blei acetat, Mutat. Res. 14, 95–100 (1972).PubMedGoogle Scholar
  554. 554.
    A. Leonard, G. Linden, and G. B. Gerber, Int. Symp. Environ. Health Aspects Lead, Amsterdam, Oct. 2–6 (1972).Google Scholar
  555. 555.
    A. Forni and G. Secchi, Int. Symp. Environ. Health Aspects Lead, Amsterdam, Oct. 2–6 (1972).Google Scholar
  556. 556.
    G. Schwanitz, G. Lehnert, and E. Gebhart, Chromosome damage after occupational exposure to lead, Dtsch. Med. Wochenschr. 95, 1636–1641 (1970).PubMedGoogle Scholar
  557. 557.
    K. Sperling, G. Weiss, M. Münzen, and G. Obe, in “Arbeitsgruppe Blei,” Kommission fur Umwelt Gefahren, Bundes Gesundifeitsambt, Berlin (1970).Google Scholar
  558. 558.
    G. Obe and K. Sperling, in “Arbeitsblei,” Kommission fur Umwelt Gefahren, Bundesgesundheitsambt, Berlin (1970).Google Scholar
  559. 559.
    G. Deknudt, A. Leonard, and B. Ivanov, Chromosome aberrations observed in male workers occupationally exposed to lead, Environ. Physiol. Biochem. 3, 132 (1973).Google Scholar
  560. 560.
    L. A. Muro and J. R. A. Goyer, Chromosome damage in experimental lead poisoning. Arch. Pathol. 87, 660–663 (1969).PubMedGoogle Scholar
  561. 561.
    L. Friberg and J. Vostal, eds., “Mercury in the Environment,” CRC Press, Cleveland (1972).Google Scholar
  562. 562.
    A. G. Johnels and T. Westermark, Mercury contamination of the environment in Sweden, “Chemical Fallout,” (M. W. Miller and G. G. Berg, eds.), p. 10, Thomas, Springfield, 111. (1969).Google Scholar
  563. 563.
    “Bibliography on Mercury Contamination in the Natural Environment,” U.S. Dept. of Interior, Washington, D.C. (1970).Google Scholar
  564. 564.
    A. Katz, Crit. Rev. Toxicol. 2, 517 (1972).Google Scholar
  565. 565.
    Maximum allowable concentrations of mercury compounds, Arch. Environ. Health 19, 891–905 (1969).Google Scholar
  566. 566.
    N. Nelson, T. C. Byerly, A. C. Kolbye, Jr., L. T. Kurland, R. E. Shapiro, S. I. Shibko, W. H. Stickel, J. E. Thompson, L. A. Van Den Berg, and A. Weissler, Hazards of mercury, Environ. Res. 4, 1 (1971).Google Scholar
  567. 567.
    L. G. Goldwater, Mercury in the environment, Sci. Am. 224, 15 (1971).PubMedGoogle Scholar
  568. 568.
    G. Lofroth, Methyl mercury, a review of health hazards and side effects associated with the emission of mercury compounds into natural systems, Ecol. Res. Comm., Swed. Nat. Sci. Res. Council Bull., 2 (1970).Google Scholar
  569. 569.
    L. Fishbein, Mutagens and potential mutagens in the biosphere. IL Metals—mercury, lead, cadmium and tin, Sci. Total Environ. 2, 341–371 (1974).PubMedGoogle Scholar
  570. 570.
    F. Bakir, S. F. Damluji, M. Amin-Zaki, M. Mustadha, A. Khalidi, N.Y. Al-Rawl, S. Tikriti, H. L Dhahir, T. W. Clarkson, J. C. Smith, and R. A. Doherty, Methyl mercury poisoning in Iraq,Science 181, 230–241 (1973).PubMedGoogle Scholar
  571. 571.
    T. Takeuchi, Int. Conf. Environ. Mercury Contam., Ann Arbor, Mich., Sept. 30-0ct. 2.Google Scholar
  572. 572.
    L. T. Kurland, S. N. Faro, and H. Seidler, Minamata disease. World Neurol. 1, 370–395 (1960).PubMedGoogle Scholar
  573. 573.
    S. Jensen and A. Jernelov, Biological methylation of mercury in aquatic organisms, Nature 223, 753–754 (1969).PubMedGoogle Scholar
  574. 574.
    L. Bertilsson and H. Y. Neujahr, Methylation of mercury compounds by methyl cobalamin, Biochemistry 10, 2805–2808 (1971).PubMedGoogle Scholar
  575. 575.
    N. Imura, E. Sukegawa, S. K. Pan, K. Wagar, J. Y. Kim, T. Kwan, and T. Ukita, Chemical methylation of inorganic mercury with methyl cobalamin, a vitamin B12 Science 172, 1248–1249 (1971).PubMedGoogle Scholar
  576. 576.
    L. Landner, Biochemical model for the biological methylation of mercury suggested from methylation studies in vivo with Neurospora crassa. Nature 200, 173–174 452–454.Google Scholar
  577. 577.
    J. M. Wood, F. S. Kennedy, and C. G. Rosen, Synthesis of methyl-mercury compounds by extracts of methanogenic bacterium. Nature 220, 173–174 (1968).PubMedGoogle Scholar
  578. 578.
    A. Eshleman, S. M. Siegel, and B. Z. Siegel, Is mercury from Hawaiian volcanoes a natural source of pollution? Nature 233, 471 (1971).PubMedGoogle Scholar
  579. 579.
    J. G. Saba, Significance of mercury in the environment. Residue Rev. 42, 103 (1972).Google Scholar
  580. 580.
    O. I. Joensuu, Fossil fuels as a source of mercury pollution, Science 172, 1027 (1971).PubMedGoogle Scholar
  581. 581.
    C. E. Billings and W. R. Matson, Mercury emissions from coal combustion. Science 176, 1232 (1972).PubMedGoogle Scholar
  582. 582.
    D. H. Klein, Mercury and other metals in urban soils. Environ. Sci. Technol. 6, 560.Google Scholar
  583. 583.
    A. G. Johnels, T. Westermark, W. Berg, P. I. Persson, and B. Sjostrand, Pike (Esox lucius L.) and some other aquatic organisms in Sweden as indicators of mercury contamination in the environment, Oikos 18, 323–333 (1967).Google Scholar
  584. 584.
    H. I. Rook, P. D. LaFleur, and T. E. Gills, Environ. Lett. 2, 195 (1971).Google Scholar
  585. 585.
    H. V. Weiss, M. Koide, and E. D. Goldberg, Mercury in a Greenland ice sheet, evidence of relent impact by man. Science 174, 692 (1971).PubMedGoogle Scholar
  586. 586.
    U.S. Geol. Survey, Prof. Paper, No. 713, U.S. Govt. Printing Office, Washington, D.C. (1970).Google Scholar
  587. 587.
    R. A. Duce, J. G. Quinn, and C. E. Olney, Enrichment of heavy metals and organic compounds in the surface microlayer of Narragansat Bay, R.I., Science 176, 161 (1972).PubMedGoogle Scholar
  588. 588.
    S. H. Williston, Mercury in the environment, J. Geophys. Res. 73, 7051 (1968).Google Scholar
  589. 589.
    P. A. Krenkel, Mercury environmental considerations. II, Crit. Rev. Environ. Control 2, 251–339 (1974).Google Scholar
  590. 590.
    R. J. Foote, Mercury vapor concentrations inside buildings, Science 177, 513–514 (1972).PubMedGoogle Scholar
  591. 591.
    C. Ramel, Hereditas 57, 448 (1967).Google Scholar
  592. 592.
    C. Ramel, Genetic effects of organic mercury compounds. I. Cytological investigations on Allium roots, Hereditas 61, 208–230 (1969).PubMedGoogle Scholar
  593. 593.
    C. Ramel, Genetic effects, in “Mercury in the Environment” (L. Friberg and J. Vostal, eds.), pp. 169–181, Chemical Rubber Publ., Cleveland, Ohio (1972).Google Scholar
  594. 594.
    G. Fiskesjo, Some results from Allium tests with organic mercury halogenides, Hereditas 62, 314–322 (1969).PubMedGoogle Scholar
  595. 595.
    G. Fiskesjo, The effect of two organic mercury compounds on human leukocytesin vitro, Hereditas 64, 142–146 (1970).PubMedGoogle Scholar
  596. 596.
    M. Umeda, K. Saito, K. Hiroje, and M. Saito, Cytotoxic effects of inorganic phenyl and alkyl mercuric compounds on HeLa cells, J. Exp. Med. 39, 47–58 (1969).Google Scholar
  597. 597.
    C. Ramel and J. Magnusson, Genetic effects of organic mercury compounds. II. Chromosome segregation in Drosophila melanogaster, Hereditas 61, 231–254 (1969).PubMedGoogle Scholar
  598. 598.
    S. Skerving, K. Hansson, C. Mangs, J. Lindsten, and N. Ryman, Methyl mercury-induced chromosome damage in man, Environ Res. 7, 83–98 (1974)Google Scholar
  599. 599.
    Y. Harada, Congenital (or fetal) Minamata disease, in “Minamata Disease” (M. Kutsuna, ed.), pp. 93–117, Study Group of Minamata Disease, Kumamoto University, Japan (1968).Google Scholar
  600. 600.
    L. Albanus, L. Frankenberg, C. Grant, U. Von Haartman, A. Jernelov, G. Nordberg, M. Rydalv, A. Schutz, and S. Skerving, Toxicity for cats of methyl mercury in contaminated fish from Swedish lakes and of methyl mercury hydroxide added to fish. Environ. Res. 5, 425–444 (1972).PubMedGoogle Scholar
  601. 601.
    K. S. Khera, Reproductive capability of male rats and mice treated with methyl mercury, Toxicol. Appl. Pharmacol. 24, 167–177 (1973).PubMedGoogle Scholar
  602. 602.
    E. W. E. MacFarlane, somatic mutations produced by organic mercurials in flowering plants,Genetics 35, 122 (1950).Google Scholar
  603. 603.
    J. E. Sass, Histological and cytological studies of ethyl mercury phosphate poisoning in corn seedlings, Phytol. Pathol. 27, 95 (1937).Google Scholar
  604. 604.
    D. Kostoff, Nature 144, 334 (1939).Google Scholar
  605. 605.
    A. Bruhin, Phytol. Pathol. Z., 23, 381 (1955).Google Scholar
  606. 606.
    V. F. Denisou, I. M. Zhironkin, and L. N. Gorshkov, Mutagenic effects of mercuran, Tr. Mosk. Ova. Ispyt. Prir. 23, 311 (1966); Chem. Abstr. 67, 81367H (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Lawrence Fishbein
    • 1
  1. 1.National Center for Toxicological ResearchJeffersonUSA

Personalised recommendations