Advertisement

Plant Test Systems for Detection of Chemical Mutagens

  • R. A. Nilan
  • B. K. Vig
Part of the Chemical Mutagens book series

Abstract

In Vol. 2 of this series Ehrenberg(1) reviewed several aspects of chemical mutagenesis in higher plants. He described the reaction of plant cells to numerous chemical mutagens and three of the major plant test systems used for detecting mutations and chromosome aberrations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Ehrenberg, in “Chemical Mutagens. Principles and Methods for Their Detection” (A. Hollaender, ed.), Vol. 2, pp. 365–386, Plenum Press, New York (1971).CrossRefGoogle Scholar
  2. 2.
    U. Zutshi and B. L. Kaul, induction of chromosomal breaks by nitrosodiethylamine and its homologues in barley, Hordeum vulgare, Indian J. Exp. Biol. 10, 152–153 (1972).Google Scholar
  3. 3.
    H. V. Mailing and F. J. de Serres, Mutagenicity of alkylating carcinogens, Ann. N.Y. Acad. Sci. 153, 788–800 (1969).CrossRefGoogle Scholar
  4. 4.
    B. A. Kihlman, “Actions of Chemicals on Dividing Cells,” Prentice Hall, Englewood Cliffs (1966).Google Scholar
  5. 5.
    B. K. Vig, S. B. Kontras, E. F. Paddock, and L. D. Samuels, Daunomycin-induced chromosomal aberrations and the influence of arginine in modifying the effect of the drug, Mutat. Res. 5, 279–287 (1968).PubMedCrossRefGoogle Scholar
  6. 6.
    B. M. Cattanach, in, “Chemical Mutagens. Principles and Methods for Their Detection” (A. Hollaender, ed.). Vol. 2, pp. 535–539, Plenum Press, New York (1971).CrossRefGoogle Scholar
  7. 7.
    C. Auerbach and B.J. Kilbey, Mutation in eucaryotes, Ann. Rev. Genet. 5, 163–218Google Scholar
  8. 8.
    R. A. Nilan, in “Induzierte Mutationen und Ihre Nutzung: Erwin-Baur-Gedächtnis-vorlesungen IV, 1966” (K. Gröber, F. Scholz, and M. Zacharias, eds.), pp. 6–20, Akademie-Verlag, Berlin (1967).Google Scholar
  9. 9.
    R. A. Nilan, A. Kleinhofs, and E. G. Sideris, in “Induced Mutations in Plants,” pp. 35–49, International Atomic Energy Agency, Vienna (1969).Google Scholar
  10. 10.
    M. H. Emmerling, An analysis of intragenic and extragenic mutation of the plant color component of the gene complex in Zea mays. Cold Spring Harbor Symp. Quant. Biol. 23, 393–407 (1958).PubMedCrossRefGoogle Scholar
  11. 11.
    L.J. Stadler and H. Roman, The effect of X-rays upon mutation of the gene A in maize, Genetics 33, 273–303 (1948).PubMedGoogle Scholar
  12. 12.
    E.J. Dollinger, Studies on induced mutation in maize. Genetics 39, 750–766 (1954).PubMedGoogle Scholar
  13. 13.
    J. L. Brewbaker and G. C. Emery, Pollen radiobotany, Radiat. Bot. 1, 101–154 (1962).CrossRefGoogle Scholar
  14. 14.
    R. B. Ashman, Mutants from maize plants heterozygous Rr Rst and their association with crossing over. Genetics 51, 305–312 (1965).PubMedGoogle Scholar
  15. 15.
    J. R. Laughnan, in “Mutation and Plant Breeding” Publ. No. 891 NAS-NRC, pp. 3–29, Washington (1961).Google Scholar
  16. 16.
    D. G. Catcheside, The P-locus position effect inOenothera, J. Genet. 48, 31–42 (1947).PubMedCrossRefGoogle Scholar
  17. 17.
    J. R. S. Fincham and G. R. K. Sastry, Controlling elements in maize, Ann. Rev. Genet. 8, 15–50 (1974).PubMedCrossRefGoogle Scholar
  18. 18.
    R. A. Brink, Paramutation, Ann. Rev. Genet. 7, 129–152 (1973).PubMedCrossRefGoogle Scholar
  19. 19.
    O. E. Nelson, Jr., The waxy locus in maize. II. The location of the controlling element alleles. Genetics 60, 507–524 (1968).PubMedGoogle Scholar
  20. 20.
    Gösta Eriksson, The waxy character, Hereditas 63, 180–204 (1969).CrossRefGoogle Scholar
  21. 21.
    M. Devreux and D. de Nettancourt, in “Haploids in Higher Plants. Advances and Potential” (K.J. Kasha, ed.), pp. 309–322, University of Guelph, Guelph (1974).Google Scholar
  22. 22.
    G. Robbelen, Chloroplastendifferenzierung nach geninduzierter Piastommutation bei Arabidopsis thaliana (L.) Heynh., Z. Pflanzenphysiol. 55, 387–403 (1966).Google Scholar
  23. 22a.
    R. Sager and Z. Ramanis, A genetic map of non-mendelian genes inChlamydomonas, Proc. Nat. Acad. Sci. 65, 593–600 (1970).PubMedCrossRefGoogle Scholar
  24. 23.
    Walter V. Brown, “Textbook of Cytogenetics,” C. V. Mosby Company, St. LouisGoogle Scholar
  25. 24.
    G. S. Khush, “Cytogenetics of Aneuploids,” Academic Press, New York (1973).Google Scholar
  26. 25.
    A. Bajer and J. Molè-Bajer, Formation of spindle fibers, kinetochore orientation, and behavior of the nuclear envelope during mitosis in endosperm, Chromosoma 27, 448–484 (1969).CrossRefGoogle Scholar
  27. 26.
    R. B. Nicklas, Chromosome segregation mechanisms, Genetics 78, 205–213 (1974).PubMedGoogle Scholar
  28. 27.
    B. K. Vig and J. Wodnicki, Separation of sister centromeres in some chromosomes from cultured human leukocytes, J. Hered. 65, 149–152 (1974).PubMedGoogle Scholar
  29. 27a.
    B. K. Vig and H. G. Miltenburger, Sequence of centromere separation of mitotic chromosomes in Chinese hamster, Chromosoma 55, 75–80 (1976).PubMedCrossRefGoogle Scholar
  30. 28.
    N. P. Dubinin and L. S. Nemtseva, The mechanism of ring chromosome formation and somatic crossing over, Mutat. Res. 11, 187–202 (1971).PubMedGoogle Scholar
  31. 29.
    A. Michaelis and R. Rieger, New karyotypes of Vicia faba L., Chromosoma 35, 1–8 (1971).CrossRefGoogle Scholar
  32. 30.
    B. A. Kihlman, in “Chemical Mutagens. Principles and Methods for Their Detection” (A. Hollaender, ed.), Vol. 2, pp. 489–514, Plenum Press, New York (1971).CrossRefGoogle Scholar
  33. 31.
    B. A. Kihlman, Biochemical aspects of chromosome breakage. Adv. Genet. 10, 1–59 (1961).PubMedCrossRefGoogle Scholar
  34. 32.
    H. J. Evans, in “Radiation-Induced Chromosome Aberrations” (S. Wolff, ed.), pp. 8–40, Columbia University Press, New York (1962).Google Scholar
  35. 33.
    V. N. Ronchi, The effect of colchicine on subchromatid exchanges in root meristem cells of Vicia faba and Allium cepa, Mutat. Res. 9, 385–394 (1970).CrossRefGoogle Scholar
  36. 34.
    G. B. Wilson and A. H. Sparrow, Configurations resulting from isochromatid and isosubchromatid unions after meiotic and mitotic prophase irradiation, Chromosoma 11, 229–244 (1960).PubMedCrossRefGoogle Scholar
  37. 35.
    W. Scheid and H. Traut, Visualization by scanning electron microscopy of achromatic lesions ("gaps") induced by X-rays in chromosomes ofVicia faba, Mutat. Res. 11, 253–255 (1971).PubMedGoogle Scholar
  38. 36.
    W. Scheid and H. Traut, Visualization of achromatic lesions ("gaps") induced by X-rays in chromosomes of Vicia faba by staining of chromosomal proteins, Mutat. Res. 12, 97–99 (1971).CrossRefGoogle Scholar
  39. 37.
    W. Scheid and H. Traut, Comparative length measurements of Vicia faba chromatids with X-ray-induced achromatic lesions ("gaps"), Mutat. Res. 18, 25–31 (1973).CrossRefGoogle Scholar
  40. 38.
    B. A. Kihlman, Sister chromatid exchanges in Vicia faba. II. Effect of thiotepa, caffeine, and 8-ethoxycaffeine on the frequency of SCE’s, Chromosoma 51, 11–18 (1975).CrossRefGoogle Scholar
  41. 39.
    S. A. Latt, Sister chromatid exchanges, indices of human chromosome damage and repair: detection by fluorescence and induction by mitomycin C, Proc. Nat. Acad. Sci. U.S.A. 71, 3162–3166 (1974).CrossRefGoogle Scholar
  42. 40.
    S. Wolff and P. Perry, Differential Giemsa staining of sister chromatids and the study of sister chromatid exchanges without autoradiography, Chromosoma 48, 341–353 (1974).PubMedCrossRefGoogle Scholar
  43. 41.
    B. A. Kihlman and D. Kronberg, Sister chromatid exchanges in Vicia faba. I. Demonstration by a modified fluorescent plus giemsa (FPG) technique, Chromosoma 51, 1–10 (1975).CrossRefGoogle Scholar
  44. 42.
    H. Kato, Induction of sister chromatid exchanges by UV light and its inhibition by caffeine, Exp. Cell Res. 82, 383–390 (1973).PubMedCrossRefGoogle Scholar
  45. 43.
    H. Kato, Spontaneous sister chromatid exchanges detected by a BUdR-labelling method. Nature, 251, 70–72 (1974).PubMedCrossRefGoogle Scholar
  46. 44.
    N. P. Dubinin and L. S. Nemtseva, Chromosome chromatid rearrangements resulting from the mitotic crossing over between sister chromatids in ring chromosomes ofCrepis capillans, Molec. Gen. Genet. 104, 331–338 (1969).CrossRefGoogle Scholar
  47. 45.
    D. F. Jones, Somatic segregation and its relation to atypical growth. Genetics 22, 484–522 (1937).PubMedGoogle Scholar
  48. 46.
    J. G. Ross and G. Holm, Somatic segregation in tomato, Hereditas 46, 224–230 (1960).CrossRefGoogle Scholar
  49. 47.
    J. Hendrychova-Tomkova, Local somatic colour changes in Salvia splendens, J. Genet. 59, 7–13 (1964).CrossRefGoogle Scholar
  50. 48.
    Y. Hirono and G. P. Rédei, Induced premeiotic exchange of linked markers in the angiosperm Arabidopsis, Genetics 51, 519–526 (1965).PubMedGoogle Scholar
  51. 49.
    R. Nbthiger and A. Dubendorfer, Somatic crossing over in the housefly, Molec. Gen Genet. 9–13 (1971).Google Scholar
  52. 50.
    P. S. Carlson, in “Genetic Mechanisms of Development” (F. H. Ruddle, ed.), pp. 329–353, Academic Press, New York (1973).CrossRefGoogle Scholar
  53. 51.
    B. K. Vig and E. F. Paddock, Alterations by mitomycin C of spot frequencies in soybean leaves, J. Heredity 59, 225–229 (1968).Google Scholar
  54. 52.
    L. W. Mericle and R. P. Mericle, Genetic nature of somatic mutations for flower color in Tradescantia, Clone 02,Radiat. Bot. 7, 449–464 (1967).Google Scholar
  55. 53.
    M. L. Christianson, Mitotic crossing over as an important mechanism of floral sectoring in Tradescantia, Mutat. Res. 28, 389–395 (1975).CrossRefGoogle Scholar
  56. 54.
    H. Dulieu, R. de Boelpaepe, and A. Deshayes, Sur l’existence spontanée de recombinaisons somatiques chez un mutant deNicotiana xanthi n.c. et leur induction par le rayonnement gamma; premieres études génétiques, C. R. Acad. Sci. Ser. D, 272, 3287–3290(1971).Google Scholar
  57. 55.
    H. L. Dulieu, Somatic variations on a yellow mutant in Nicotiana tabacum L. (a1 +/ a1a2 +/a2). II. Reciprocal genetic events occurring in leaf cells,Mutat. Res. 28, 69–77 (1975).CrossRefGoogle Scholar
  58. 56.
    J. R. Barrow, H. Chaudhari, and M. P. Dunford, Twin spots on leaves of homozygous cotton plants, J. Hered. 64, 222–226 (1973).Google Scholar
  59. 57.
    A. Deshayes and H. Dulieu, in “Polyploidy and Induced Mutations in Plants,” pp. 85–99, International Atomic Energy Agency, Vienna (1974).Google Scholar
  60. 58.
    R. A. Nilan, in “Induced Mutations and Plant Improvement,” pp. 141–151, International Atomic Energy Agency, Vienna (1972).Google Scholar
  61. 59.
    Manual on Mutation Breeding, Technical Reports Series No. 119, International Atomic Energy Agency, Vienna (1970), 233 pp.Google Scholar
  62. 60.
    H. Gaul, Mutations in plant breeding, Radiat. Bot. 4(3), 155–232 (1964).CrossRefGoogle Scholar
  63. 61.
    B. K. Vig, Somatic crossing over in Glycine max (L.) Merrill: Effect of some inhibitors of DNA synthesis on the induction of somatic crossing over and point mutations. Genetics 73, 583–596 (1973).PubMedGoogle Scholar
  64. 62.
    B. Vig, Soybean(Glycine max): A new test system for study of genetic parameters as affected by environmental mutagens, Mutat. Res. 31, 49–56 (1975).CrossRefGoogle Scholar
  65. 63.
    B. K. Vig, Somatic crossing over in Glycine max (L.) Merrill: Mutagenicity of sodium azide and lack of synergistic effect with caffeine and mitomycin C, Genetics 75, 265–211.(1973)PubMedGoogle Scholar
  66. 64.
    B. K. Vig, Somatic crossing over in Glycine max (L.) Merrill: Differential response to ®H-emitted beta particles and ®®Co emitted gamma rays, Radiat. Bot. 14, 127–137Google Scholar
  67. 65.
    V. N. Iyer and W. Szybalski, A molecular mechanism of mitomycin action: Linking of complementary DNA strands,Proc. Nat. Acad. Sci. U.S.A. 50, 355–362 (1963).CrossRefGoogle Scholar
  68. 66.
    R. Holliday, The induction of mitotic recombination by mitomycin C in Ustilago and Saccharomyces, Genetics 50, 323–335 (1964).Google Scholar
  69. 67.
    M. W. Shaw and M. M. Cohen, Chromosome exchanges in human leukocytes induced by mitomycin C, Genetics 51, 181–190 (1965).PubMedGoogle Scholar
  70. 68.
    H. L. Dulieu, Somatic variations on a yellow mutant inNicotiana Tabacum L. (a1 +/a1a2 +/a2). I-Non-reciprocal genetic events occurring in leaf cells, Mutat. Res. 25, 289–304 (1974).CrossRefGoogle Scholar
  71. 69.
    P. S. Carlson, Mitotic crossing over in a higher plant. Genet. Res. 24, 109–112 (1974).CrossRefGoogle Scholar
  72. 70.
    H. H. Smith, H. H. Rossi, and A. M. Kellerer, in “Biological Effects of Neutron Irradiation,” pp. 405–416, International Atomic Energy Agency, Vienna (1974).Google Scholar
  73. 71.
    B. V. Conger, Maximum RBE of fission neutrons for induction of somatic mutations in maize. Int. J. Radiat. Biol. 27, 271–281 (1975).CrossRefGoogle Scholar
  74. 72.
    S. Blixt, Mutation genetics in Pisum, Agri. Hort. Genet. 30, 1–293 (1972).Google Scholar
  75. 73.
    G. Ahnström, A. T. Natarajan, and J. Veleminsky, Chemically induced somatic mutations in Arabidopsis, Hereditas 72, 319–322 (1972).CrossRefGoogle Scholar
  76. 74.
    A. H. Sparrow, L. A. Schairer, and R. Villalobos-Pietrini, Comparison of somatic mutation rates induced inTradescantia by chemical and physical mutagens, Mutat. Res. 26, 265–276 (1974).PubMedCrossRefGoogle Scholar
  77. 75.
    L. W. Mericle and R. P. Mericle, Somatic mutations in Clone 02 Tradescantia. A search for genetic identity, J. Hered 62(6), 323–328 (1971).Google Scholar
  78. 76.
    L. W. Mericle and R. P. Mericle, Resolving the enigma of multiple mutant sectors in stamen hairs of Tradescantia, Genetics 73, 575–582 (1973).Google Scholar
  79. 77.
    A. G. Underbrink, L. A. Schairer, and A. H. Sparrow, in “Chemical Mutagens. Principles and Methods for Their Detection” (A. Hollaender, ed.), Vol. 3, pp. 171–207, Plenum Press, New York (1973).CrossRefGoogle Scholar
  80. 78.
    R. A. Nilan, “The Cytology and Genetics of Barley, 1951–1962,” Washington State University Press, Pullman (1964).Google Scholar
  81. 79.
    R. A. Nilan, in “Handbook of Genetics” (Robert C. King, ed.) Vol. 2, pp. 93–100, Plenum Press, New York (1974).CrossRefGoogle Scholar
  82. 80.
    R. A. Nilan, E. G. Sideris, A. Kleinhofs, C. Sander, and C. F. Konzak, Azide—a potent mutagen, Mutat. Res. 17, 142–144 (1973).CrossRefGoogle Scholar
  83. 81.
    A. Kleinhofs, C. Sander, R. A. Nilan, and C. F. Konzak, in “Polyploidy and Induced Mutations in Plant Breeding,” pp. 195–199, International Atomic Energy Agency, Vienna (1974).Google Scholar
  84. 82.
    G. Künzel, The ratio of chemically induced chromosome aberrations to gene mutations in barley. A critical study, Mutat. Res. 12, 397–409 (1971).CrossRefGoogle Scholar
  85. 83.
    J. R. K. Savage and D. J. Wigglesworth, Lack of uniform radiosensitivity of dormant cells in the root meristem of barley seeds. A preliminary report. Technical Reports Series No. 141, International Atomic Energy Agency, Vienna (1972), pp. 77–89.Google Scholar
  86. 84.
    G. Rédei, in “Handbook of Genetics” (Robert C. King, ed.) Vol. 2, pp. 151–180, Plenum Press, New York (1974).CrossRefGoogle Scholar
  87. 85.
    G. Rédei, Arabidopsis thaliana (L.) Heynh. A review of the genetics and biology, Bibliogr. Genet. 20, 1–151 (1970).Google Scholar
  88. 86.
    A. J. Müller, Embryonenstest zum Nachweis rezessiver Letalfaktoren bei Arabidopsis thahana, Biol. Zentralbl. 83, 133–163 (1963).Google Scholar
  89. 87.
    G. Röbbelen, Untersuchungen zur genetischen Characterisierung von induzierten phänotypischen Reversionen bei Arabidopsis Mutanten, Z. Pflanzenzucht. 67, 177–196 (1972).Google Scholar
  90. 88.
    A. H. Mohamed, Chromosomal changes in maize induced by hydrogen fluoride gas. Can. J. Genet. Cytol. 12, 614–620 (1970).PubMedGoogle Scholar
  91. 89.
    Jan Sjödin, Induced asynaptic mutants in Vicia faba L., Hereditas 66, 215–232 (1970).CrossRefGoogle Scholar
  92. 90.
    C. W. Lawrence, The effect of radiation on chiasma formation inTradescantia, Radiat. Bot. 7, 92–96 (1961).CrossRefGoogle Scholar
  93. 91.
    K. Church and D. E. Wimber, Meiosis in Ornithogalum virens (Lilliaceae). II. Univalent production by preprophase cold treatment, Exp. Cell Res. 64, 119–124 (1971).PubMedCrossRefGoogle Scholar
  94. 92.
    K. Church and D. Wimber, Meiosis in the grasshopper: Chiasma frequency after elevated temperature and X-rays,Can. J. Genet. Cytol. 11, 209–216 (1969).PubMedGoogle Scholar
  95. 93.
    D. de Nettancourt, Self-incompatibility in basic and applied researches with higher plants. Genet. Agr. 26, 163–216 (1972).Google Scholar
  96. 94.
    D. Lewis, Structure of the incompatibility gene. II. Induced mutation rate. Heredity 3, 339–355 (1949).PubMedCrossRefGoogle Scholar
  97. 95.
    K. K. Pandey, Elements of the S-gene complex. VI. Mutations of the self-incompatibility gene, pseudo-compatibility and origin of new incompatibility alleles, Genetica 41, 477–516 (1970).Google Scholar
  98. 96.
    M. Devreux, in “Induced Mutations in Vegetatively Propagated Plants,” pp. 41–51, International Atomic Energy Agency, Vienna (1973).Google Scholar
  99. 97.
    Oliver E. Nelson, The waxy locus in maize. III. Effect of structural heterozygosity on intragenic recombination and flanking marker assortment, Genetics 79, 31–44 (1975).PubMedGoogle Scholar
  100. 98.
    Ming-Hung Yu and Peter A. Peterson, Influence of chromosomal gene position on intragenic recombination in maize, Theor. Appl. Genet. 43, 121–133 (1973).CrossRefGoogle Scholar
  101. 99.
    Ken J. Kasha (ed.), “Haploids in Higher Plants. Advances and Potential,” University of Guelph, Guelph (1974).Google Scholar
  102. 100.
    H. H. Smith, Model systems for somatic cell plant genetics, BioScience 24(b)\, 269–276 (1974).CrossRefGoogle Scholar
  103. 101.
    C. Nitsch and B. Norreel, in, “Genes, Enzymes, and Populations” (A. M. Srb, ed.). Vol. 2, pp. 129–144, Plenum Press, New York (1973).CrossRefGoogle Scholar
  104. 102.
    C. Nitsch, in “Haploids in Higher Plants” (Ken J. Kasha, ed.), pp. 123–135, University of Guelph, Guelph (1974).Google Scholar
  105. 103.
    C. P. Swanson, Relative effects of qualitatively different ionizing radiations on the production of chromatid aberrations in air and nitrogen, Genetics 40, 193–203 (1955).PubMedGoogle Scholar
  106. 104.
    H. H. Smith, in “Polyploidy and Induced Mutations in Plant Breeding,” pp. 355–365, International Atomic Energy Agency, Vienna (1974).Google Scholar
  107. 105.
    P. S. Carlson, The use of protoplasts for genetic research, Proc. Nat. Acad. Sci. U.S.A. 70, 598–602 (1973).CrossRefGoogle Scholar
  108. 106.
    P. S. Carlson, Induction and isolation of auxotrophic mutants in somatic cell cultures of Nicotiana tabacum. Science 168, 487–489 (1970).Google Scholar
  109. 107.
    P. S. Carlson, Methionine sulfoximine-resistant mutants of tobacco. Science 180, 1366–1368 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • R. A. Nilan
    • 1
  • B. K. Vig
    • 2
  1. 1.Department of Agronomy and Soils and Program in GeneticsWashington State UniversityPullmanUSA
  2. 2.Department of BiologyUniversity of NevadaRenoUSA

Personalised recommendations