The Function of Drosophila in Genetic Toxicology Testing

  • E. Vogel
  • F. H. Sobels
Part of the Chemical Mutagens book series


Chemical compounds in an ever-increasing variety and kind are constantly being introduced into the human environment. Some of these may affect the genetic material. Such effects, when produced in germ cells, lead to an increase of the genetic load of our descendants, while in somatic cells they may result in the development of malignancies. Recent findings suggest a striking overlap between the mutagenic and carcinogenic potential of chemicals that a distinction between the two tends to become an artificial one.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. J. De Serres, The correlation between carcinogenic and mutagenic activity in short-term tests for mutation induction and DNA repair, Mutat. Res. 31, 203 (1975).PubMedGoogle Scholar
  2. 2.
    B. Bridges, The three-tier approach to mutagenicity screening and the concept of radiation-equivalent dose, Mutat. Res. 26, 335 (1974).PubMedGoogle Scholar
  3. 3.
    S. Abrahamson, and E. B. Lewis, The detection of mutations in Drosophila melanogaster, in: “Chemical mutagens. Principals and Methods for Their Detection” (A. Hollaender ed.), p. 461, Plenum Press, New York (1971).Google Scholar
  4. 4.
    H. J. Muller and I. I. Oster, Some mutational techniques in Drosophila, in: “Methodology in Basic Genetics” (W. J. Burdette, ed.) p. 249, Holden-Day Inc., San Francisco (1963).Google Scholar
  5. 5.
    W. R. Lee, Chemical mutagenesis, in: “The Genetics and Biology of Drosophila” (M. Ashburner and E. Novitski, eds.). Academic Press, New York (1975).Google Scholar
  6. 6.
    F. H. Sobels, The role ofDrosophila in the field of mutation research. Arch. Genet. 45, 101 (1972).Google Scholar
  7. 7.
    F. H. Sobels, The advantages ofDrosophila for mutation studies, Mutat. Res. 26, 111 (1974).Google Scholar
  8. 8.
    F. E. Würgler, F. H. Sobels, and E. Vogel, Drosophila tests, Mutat. Res., 1975, in press.Google Scholar
  9. 9.
    J. E. Casida, Insect microsomes and insecticide chemical oxidations, in: “Microsomes and Drug Oxidations,” p. 517Academic Press, New York (1969).Google Scholar
  10. 10.
    E. Hodgson, and F. W. Plapp, Biochemical characteristics of insect microsomes, J. Agr. Food Chem. 18, 1048 (1970).Google Scholar
  11. 11.
    C. F. Wilkinson, and L. B. Brattsten, (1972), Microsomal drug metabolizing enzymes in insects, Drug Metab. Reviews 1 (2), 153.Google Scholar
  12. 12.
    H. S. Mason, J. C. North, and M. Vanneste, (1965), Microsomal mixed-function oxidations: the metabolism of xenobiotics, Fedn. Proc. 24, 1172.Google Scholar
  13. 13.
    L. G. Hansen, and E. Hodgson, (1971), Biochemical characteristics of insect microsomes, N- and O-demethylation, Biochem. Pharm. 20, 1569.PubMedGoogle Scholar
  14. 14.
    J. H. Dewaide, (1971), Metabolism of Xenobiotics. Comparative and kinetic studies as a basis for environmental pharmacology. Thesis, University Nijmegen.Google Scholar
  15. 15.
    H. S. Mason, Mechanisms of oxygen metabolism, in: “Advances in Enzymology” (Nord, F. F. ed.) pp. 19, 79, Interscience Publishers Inc., New York (1957).Google Scholar
  16. 16.
    D. V. Parke, “The Biochemistry of Foreign Compounds,” p. 261, Pergamon Press, Oxford (1968).Google Scholar
  17. 17.
    L. Shuster, Metabolism of drugs and toxic substances, Ann. Rev. Biochem. 33, 571 (1964).PubMedGoogle Scholar
  18. 18.
    R. T. Williams, “Detoxication Mechanisms,” Wiley, New York (1959).Google Scholar
  19. 19.
    M. Tsukamoto, Metabolic fate of DDT in Drosophila melanogaster. I. Identification of a non-DDE metabolite, Botyu-Kagaku 24, 141 (1959).Google Scholar
  20. 20.
    M. Tsukamoto, Metabolic fate of DDT in Drosophila melanogaster. II. DDT resistance and Kelthane production, Botyu-Kagaku 25, 156 (1960).Google Scholar
  21. 21.
    M. Tsukamoto, Metabolic fate of DDT in Drosophila melanogaster. III. Comparative studies, Botyu-Kagaku 26, 74 (1961).Google Scholar
  22. 22.
    A. W. A. Brown, Genetics of insecticide resistance in insect vectors, in: “Genetics of Insect Vection of Disease” (J. W. Wright and R. Pal eds.), p. 505, Elsevier, Amsterdam (1967).Google Scholar
  23. 23.
    F. J. Oppenoorth, Biochemical genetics of insecticide resistance, Ann. Rev. Entomol. 10, 185 (1965).Google Scholar
  24. 24.
    P. N. Magee and J. M. Barnes, The production of malignant primary liver tumours in the rat by feeding dimethylnitrosamine, Brit. J. Cancer 10, 114 (1956).PubMedGoogle Scholar
  25. 25.
    E. C. Miller and J. A. Miller, The mutagenicity of chemical carcinogens: Correlations, problems, and interpretations, in:“Chemical mutagens, Principles and Methods for Their Detection” (A. Hollaender, ed.), p. 83, Plenum Press, New York (1971).Google Scholar
  26. 26.
    J. A. Miller, Carcinogenesis by chemicals: An overview. G.H.A. Crowes Memorial Lecture, Cancer Res. 38, 559 (1971).Google Scholar
  27. 27.
    R. Preussmann, Zum Wirkungsmechanismus karzinogener Aryldialkyltriazene, Fortschr. Krebsforsch., p. 163 (1969).Google Scholar
  28. 28.
    H. Druckrey, R. Preussmann, S. Ivankovic, D. Schmähl, I. Afkham, G. Blum, H. D. Mennel, M. Müller, P. Petropoulos, and H. Schneider, Organotrope carcinogene Wirkungen bei 65 verschiedenen N-Nitroso-Verbindungen an BD-Ratten, Z. Krebsforsch. 69, 103 (1967).Google Scholar
  29. 29.
    P. N. Magee and R. Schoental, Carcinogenesis by nitroso compounds, Brit. Med J. 20, 102 (1964).Google Scholar
  30. 30.
    R. Preussmann, H. Druckrey, S. Ivankovic, and A. von Hodenberg, Chemical structure and carcinogenicity of aliphatic hydrazo, azo, and azoxy compounds and of triazenes, potentialin vivo alkylating agents, Ann. N.Y. Acad. Sci. 163, 797 (1969).Google Scholar
  31. 31.
    R. Preussmann, A. von Hodenberg, and H. Hengy, Mechanism of carcinogenesis with l-aryl-3,3-dialkyltriazenes. Enzymatic dealkylation by rat liver microsomal fraction in vitro, Biochem. Pharmacol. 18, 1 (1969).Google Scholar
  32. 32.
    H. Druckrey, Chemische Struktur und Reaktionsmechanismen krebserzeugender Substanzen, Umsch. Wiss. Tech. p. 94 (1972).Google Scholar
  33. 33.
    P. D. Lawley and C. J. Thatcher, Methylation of deoxyribonucleic acid in cultured mammalian cells by N-methyl-N-nitro-N-nitrosoguanidine, Biochem. J. 116, 696 (1970).Google Scholar
  34. 34.
    I. A. Rapoport, The alkylation of the gene molecule, Dokl. Akad. Nauk SSSR 59, 1183 (1948).Google Scholar
  35. 35.
    C. Auerbach and B.J. Kilbey, Mutation in eukaryotes, Ann. Rev. Genet. 5, 163 (1971).PubMedGoogle Scholar
  36. 36.
    W. Lijinsky and A. E. Ross, Alkylation of rat liver nucleic acids not related to carcinogenesis by N-nitrosamines, J. Nat. Cancer Inst. 42, 1095 (1969).PubMedGoogle Scholar
  37. 37.
    G. F. Kolar and R. Preussmann, Validity of a linear Hammet plot for the stability of some carcinogenic l-aryl-3,3-dimethyltriazenes in an aqueous system, Z. Naturorsch 26b, 950(1971).Google Scholar
  38. 38.
    F. W. Krüger, R. Preussmann, and N. Niepelt, Mechanism of carcinogenesis with 1-aryl-3, 3-dialkyl-triazenes. III. In vitro methylation of RNA and DNA with 1-phenyl-3,3(14C)-dimethyltriazene, Biochem. Pharmakol. 20, 529 (1971).Google Scholar
  39. 39.
    G. F. Kolar, Biologically active derivatives of 1,3-triazene, in “Advances in Antimicrobial and Antineoplastic Chemotherapy,” Proc. of the VIIth Int. Congr. Of Chemotherapy, (M. Hejzlar, M. Semonsky and S. Masak, eds.), Prague, Urban und Schwarzenberg, München, 1972 p. 121 (1971).Google Scholar
  40. 40.
    W. Kreis, S. B. Peipho, and H. V. Bernhard, Studies on the metabolic fate of the 14-C-labeled methyl group of a methyl hydrazine derivative in P815 mouse leukemia, Experienta 22, 431 (1966).Google Scholar
  41. 41.
    W. Kreis, J. H. Burchenal, and D. J. Hutchinson, Influence of a methylhydrazine derivative on thein vivo transmethylation of the S-methyl group of methionine onto purine and pyrimidine bases of RNA, Proc. Am. Assoc. Cancer Res. 9, 38, (1968).Google Scholar
  42. 42.
    H. J. Teas, and J. G. Dyson, Mutations in Drosophila by methylazoxymethanol, the aglycone of cycasin, Proc. Soc. Exp. Biol. Med. 125, 988 (1967).PubMedGoogle Scholar
  43. 43.
    N. Brock, Pharmakologische Untersuchungen mit Trofosfamid (Ixoten®), einem neuen Oxazaphosphorinoxid, Med. Monatsschr. 27, 390 (1973).PubMedGoogle Scholar
  44. 44.
    N. Brock, R. Gross, H. J. Hohorst, H. O. Klein, and B. Schneider, Activation of cyclophosphamide in man and animals, Cancer 27, 1512 (1971).PubMedGoogle Scholar
  45. 45.
    N. Brock, and H. J. Hohorst, Über die Aktivierung von Cyclophosphamidin vivo und in vitro, Arzneimittel-Forsch. 13, 1021 (1963).Google Scholar
  46. 45a.
    N. Brock, and H. J. Hohorst, (1967), Metabolism of cyclophosphamide, Cancer 20, 900.PubMedGoogle Scholar
  47. 46.
    N. Brock, H. Hoefer-Janker, H. J. Hohorst, W. Scheef, B. Schneider, and H. C. Wolf, (1973), Die Aktivierung von Ifosfamid an Mensch und Tier, Arzeim.-Forsch. 23, 1.Google Scholar
  48. 47.
    N. E. Sladek, Therapeutic efficacy of cyclophosphamide as a function of its metabolism, Cancer Res. 535 (1972).Google Scholar
  49. 48.
    T. A. Connors, P. J. Cox, P. B. Farmer, A. B. Foster, and M. Jarman, Some studies of the active intermediates formed in the microsomal metabolism of cyclophosphamide and ifosfamide, Pharmacol. 23, 115 (1974).Google Scholar
  50. 49.
    D. L. Hill, W. R. Laster, Jr., and R. F. Struck, Enzymatic metabolism of cyclophosphamide and nicotine and production of a toxic cyclophosphamide metabolite. Cancer 658 (1972).Google Scholar
  51. 50.
    R. A. Alacron and J. Meienhofer, Formation of the cytotoxic aldehyde acrolein duringin vitro degradation of cyclophosphamide. Nature New Biol. 233, 250 (1971).Google Scholar
  52. 51.
    M. Colvin, C. A. Padgett, and C. Fenselau, A biologically active metabolite of cyclophosphamide. Cancer Res. 33, 915 (1973).PubMedGoogle Scholar
  53. 52.
    I. A. Rapoport, Mutations under the influence of unsaturated aldehydes, Dokl. Akad. NaukSSSR 61, 713 (1948).Google Scholar
  54. 53.
    D. L. Hill, W. R. Laster, Jr., M. C. Kirk, S. El Dareer, and R. F. Struck, Metabolism of ifosfamide and production of a toxic ifosfamide metabolite. Cancer Res. 33, 1016 (1973).PubMedGoogle Scholar
  55. 54.
    R. C. Garner, E. C. Miller, J. V. Garner, and R. S. Hanson, Formation of a factor lethal forS. typhimurium TA 1530 and TA 1531 on incubation of aflatoxin Bi with rat liver microsomes, Biochem. Biophys. Res. Commun. 45, 774 (1971).PubMedGoogle Scholar
  56. 55.
    R. C. Garner, E. C. Miller, and J. A. Miller, Microsomal metabolism of aflatoxin Bi to a reactive derivative toxic toSalmonella typhimurium TA 1530, Cancer Res. 32, 2058 (1972).PubMedGoogle Scholar
  57. 56.
    B. N. Ames, W. E. Durston, E. Yamasaki, and F. D. Lee, Carcinogens are mutagens: A simple test combining liver homogenates for activation and bacteria for detection, Proc. Nat. Acad. Sci. U.S.A. 70, 2281 (1973).Google Scholar
  58. 57.
    W. H. Butler, M. Greenblatt, and W. Lijinsky, Carcinogenesis by aflatoxins Bi, Gi, and Ba, Cancer Res. 29, 2206 (1969).PubMedGoogle Scholar
  59. 58.
    G. N. Wogan, G. S. Edwards, and P. M. Newberne, Structure-activity relationships in toxicity and carcinogenicity of aflatoxins and analogs. Cancer Res. 31, 1936 (1971).PubMedGoogle Scholar
  60. 59.
    T. Ong, Mutagenicity of aflatoxins in Neurospora crassa, Mutat, Res. 9, 615 (1970).Google Scholar
  61. 60.
    Tong-man Ong, and F. J. De Serres, Mutagenicity of chemical carcinogens in Neurospora crassa, Cancer Res. 32, 1890 (1972).Google Scholar
  62. 61.
    R. C. Garner, Microsome-dependent binding of aflatoxin Bi to DNA, RNA, polyribonucleotides and proteinsin vitro, Chem.-Biol. Interactions 6, 125 (1973).Google Scholar
  63. 62.
    H. L. Gurtoo, Binding of aflatoxins (Bi, B2, Gi, G2, and Bza) and metabolites to hepatic microsomes. Pharmacologist 15, 176 (1973).Google Scholar
  64. 63.
    H. L. Gurtoo and T. C. Campbell, Metabolism of aflatoxin Bi and metabolism-dependent and independent binding of aflatoxin Bi to rat hepatic microsomes, Mol. Pharmacol. 5, 635 (1973).Google Scholar
  65. 64.
    H. L. Gurtoo and C. V. Dave, In vitro metabolic conversion of aflatoxins and benzo(a)pyrene to nucleic acid-binding metabolites, Cancer Res. 35, 382 (1975).PubMedGoogle Scholar
  66. 65.
    C. C. J. Culvenor, A. T. Dann, and A. T. Dick, Alkylation as the mechanism by which the hepatotoxic pyrrolizidine alkaloids act on cell nuclei. Nature 195, 570 (1962).PubMedGoogle Scholar
  67. 66.
    C. C. J. Culvenor, D. T. Downing, J. A. Edgar, and M. V. Jago, Pyrrolizidine alkaloids as alkylating and antimitotic agents, Ann. N.Y. Acad. Sci. 163, 837 (1969).Google Scholar
  68. 67.
    A. R. Mattocks, Toxicity of pyrrolizidine alkaloids. Nature 217, 723 (1968).PubMedGoogle Scholar
  69. 68.
    L. B. Bull, C. C. J. Culvenor, and A. T. Dick, “The Pyrrolizidine Alkaloids,” North Holland Publishing Co., Amsterdam (1968).Google Scholar
  70. 69.
    R. Schoental, Liver lesions in young rats suckled by mothers treated with the pyrrolizidine (senecio) alkaloids lasiocarpine and retrorsine, J. Pathol. Bact. 77, 485 (1959).Google Scholar
  71. 70.
    R. Schoental, Liver disease and “natural” hepatoxins. Bull. W. H. O. 29, 823 (1963).PubMedGoogle Scholar
  72. 71.
    J. A. Miller and E. C. Miller, in:Potential Carcinogenic Hazards from Drugs, p. 209, Springer, Berlin (1967).Google Scholar
  73. 72.
    J. A. Miller and E. C. Miller, The metabolic activation of carcinogenic aromatic amines and amides. Prog. Exp. Tumor Res. 11, 273 (1969).PubMedGoogle Scholar
  74. 73.
    E. C. Miller and J. A. Miller, Studies on the mechanism of activation of aromatic amine and amide carcinogens to ultimate carcinogenic electrophilic reactants, Ann. N. Y. Acad. Sci. 163, 731 (1969).Google Scholar
  75. 74.
    E. K. Weisburger and J. H. Weisburger, Chemistry, carcinogenicity, and metabolism of N-2-nuorenamine and related compounds, Adv. Cancer Res. 5, 331 (1958).PubMedGoogle Scholar
  76. 75.
    H. R. Gutman, D. Malejka-Giganti, E.J. Barry, and R. E. Rydell, On the correlation between the hepatocarcinogenicity of the carcinogen, N-2-fluorenylacetamide, and its metabolic activation by the rat. Cancer Res. 32, 1554 (1972).Google Scholar
  77. 76.
    Y. Yost, H. R. Gutman, and R. E. Rydell, The carcinogenicity of fluorenylhydroxamic acids and N-acetozy-N-fluorenylacetamides for the rat as related to the reactivity of the esters toward nucleophils. Cancer Res. 35, 447 (1975).PubMedGoogle Scholar
  78. 77.
    E. Boyland, Polycyclic hydrocarbons, Brit. Med. Bull. 20, 121 (1964).PubMedGoogle Scholar
  79. 78.
    H. V. A. Gelboin, in: “The Jerusalem Symposium on Quantum Chemistry and Biochemistry Physico-chemical mechanisms of Carcinogenesis” (E. D. Bergmann and B. Pullman, eds.), Vol. 1, p. 175 Israel. Acad. Sci. Hum., Jerusalem (1969).Google Scholar
  80. 89.
    P. L. Grover and P. Sims, Enzyme-catalyzed reactions of polycyclic hydrocarbons with DNA on protein in vitro, Biochem. J. 110, 159 (1969).Google Scholar
  81. 80.
    P. L. Grover, A. Hewer, and P. Sims, Formation of K-region epoxides as microsomal metabolites of pyrene and benzo(a)pyrene, Biochem. Pharmacol. 21 2713 (1972).PubMedGoogle Scholar
  82. 81.
    P. O. P. Ts’o, S. A. Lesko, and R. S. Umans, in: “The Jerusalem Symposium on Quantum Chemistry and Biochemistry. Physico-chemical Mechanisms of Carcinogenesis” E. D. Bergmann, and B. Pullman, eds.). Vol. 1, p. 106, Israel Acad. Sci. Hum., Jerusalem (1969).Google Scholar
  83. 82.
    J. Fried and D. E. Schümm, One-electron transfer oxidation of 7,12-dimethylbenz(a)anthracene, a model for the metabolic activation of carcinogenic hydrocarbons, J. Am. Chem. Soc. 89, 5508 (1967).PubMedGoogle Scholar
  84. 83.
    R. S. Umans, S. A. Lesko, Jr., and P. O. P. Ts’o, chemical linkage of carcinogenic 3,4-benzpyrene to DNA in aqueous solution induced by peroxide and iodine. Nature 221, 763 (1969).PubMedGoogle Scholar
  85. 84.
    M. Wilk and H. Schwab, Zum Transportphänomen und Wirkungsmechanismus des 3,4-Benzpyrens in der Zelle, Z. Naturforsch. 23b, 431 (1968).Google Scholar
  86. 85.
    S. C. Chang, P. H. Terry, C. W. Woods, and A. B. Borkovec, Metabolism of hempa uniformly labeled with C14 in male house flies, J. Econ. Entomot. 60, 1623 (1967).Google Scholar
  87. 86.
    A. R. Jones and H. Jackson, The metabolism of hexamethylphosphoramide and relatedcompounds, Biochem. Pharmacol. 17, 2247 (1968).Google Scholar
  88. 87.
    P. L. Viola, Carcinogenic effect of vinyl chloride, Abstr. 10th Int. Cancer Cong. Houston, Vol. 29.Google Scholar
  89. 88.
    J. L. Creech and M. N. Johnson, Angiosarcoma of the liver in the manufacture of Polyvinylchloride, J. Occup. Med. 16, 150(1974).PubMedGoogle Scholar
  90. 89.
    H. Bartsch, C. Malaveille, and R. Montesano, Human, rat and mouse liver-mediated mutagenicity of vinyl chloride in S. typhimurium strains, Int. J. Cancer 15, 429 (1975).PubMedGoogle Scholar
  91. 90.
    U. Rannug, A. Johansson, C. Ramel and C. A. Wachtmeister, The mutagenicity of vinyl chloride after metabolic activation, Ambio3, 194 (1974).Google Scholar
  92. 91.
    A. Ducatman, K. Hirschhorn, and I. J. Selikoff, Vinyl chloride exposure and human chromosome aberrations, Mutat. Res. 31, 163 (1975).PubMedGoogle Scholar
  93. 92.
    H. Bartsch and R. Montesano, Mutagenic and carcinogenic effects of vinyl chloride, Mutat. Res. 32, 93 (1975).PubMedGoogle Scholar
  94. 93.
    C. Malaveille, H. Bartsch, A. Barbin, A. M. Camus, R. Montesano, A. Croisy, and P. Jacquignon, Mutagenicity of vinyl chloride, chloroethylene oxide, chloroacetaldehyde and chloroethanol. Biochem. Biophys. Res. Commun. 63, 363 (1975).PubMedGoogle Scholar
  95. 94.
    G. F. Kolar, R. Fahrig, and E. Vogel, Structure-activity dependence in some novel ring-substituted 3, 3-dimethyl-l-phenyltriazenes. Genetic effects in Drosophila melanogaster and in Saccharomyces cerevisiae by a direct and a host-mediated assay, Chem.-Biol. Interactions 9, 365 (1974).Google Scholar
  96. 95.
    G. F. Kolar and J. Schlesiger, Urinary metabolites of l-aryl-3, 3-dimethyltriazenes in the rat (abstr.). Paper presented at the second meeting of the European Assoc. for Cancer Res., Heidelberg, Oct. 2–5, 1973, p. 246.Google Scholar
  97. 96.
    E. Vogel, Chemische konstitution und mutagene Wirkung. VI. Induktion dominanter und rezessiv-geschlechtsgebundener Letalmutationen durch Aryldialkyltriazene bei Drosophila melanogaster, Mutat. Res. 11, 397 (1971).PubMedGoogle Scholar
  98. 97.
    E. Vogel, R. Fahrig, and G. Ohe, Triazenes, a new group of indirect mutagens; comparative investigations of the genetic effects of different aryldialkyltriazenes using Saccharomyces cerevisiae, the host-mediated assay, Drosophila melanogaster, and human chromosomes in vitro, Mutat. Res. 21, 123 (1973).Google Scholar
  99. 98.
    O. G. Fahmy, M. J. Fahmy, J. Massasso, and M. Ondrej, Differential mutagenicity of the amine and amide derivatives of nitroso-compounds in Drosophila melanogaster, Mutat. Res. 3, 201 (1966).PubMedGoogle Scholar
  100. 99.
    O. G. Fahmy and M. J. Fahmy, Mutational mosaicism in relation to dose with the amine and amide derivatives of nitroso compounds in Drosophila melanogaster, Mutat. Res. 6, 139 (1968).Google Scholar
  101. 100.
    L. Pasternak, Mutagene Wirkung von Dimethylnitrosamin bei Drosophila melanogaster, Naturwissenschaften 49, 381 (1962).Google Scholar
  102. 101.
    L. Pasternak, Untersuchungen über die mutagene Wirkung von Nitrosaminen und Nitrosomethylharnstoff, Acta Biol. Med. Ger. 10, 436 (1963).PubMedGoogle Scholar
  103. 102.
    L. Pasternak, Untersuchungen über die mutagene Wirkung verschiedener Nitrosamin- und Nitrosamid-Verbindungen, Arzneim.-forsch. 14, 802 (1964).Google Scholar
  104. 103.
    E. Vogel and B. Leigh, Concentration-effect studies with MMS, TEB, 2,4,6-triCl-PDMT and DEN on the induction of dominant and recessive lethals, chromosome loss and translocations in Drosophila sperm, Mutat. Res. 29, 383 (1975).PubMedGoogle Scholar
  105. 104.
    E. Vogel, Strain variations in response to certain indirect mutagens in Drosophila melanogaster, Drosophila Inform. Serv. 50, 138 (1973).Google Scholar
  106. 105.
    C. Bertram and G. Höhne, Uber die radiomimetische Wirkung einiger Zytostatika im Mutationsversuch an Drosophila, Strahlentherapie 43, 386 (1959).Google Scholar
  107. 106.
    G. Röhrborn, Chemische Konstitution und mutagene Wirkung. IV. Zyklische N-Lostderivate, Mol. Gen. Genet. 102, 50 (1968).PubMedGoogle Scholar
  108. 107.
    E. Vogel, Specific mutagenic activity of cyclophosphamide, trofosfamide, and ifosfamide in Drosophila melanogaster, Mutat. Res. 33, 221 (1975).Google Scholar
  109. 108.
    H. Druckrey, R. Preussmann, D. Schmähl, and M. Müller, Chemische Konstitution und carcinogene Wirkung bei Nitrosaminen, Naturwissenschaften 48, 134 (1961).Google Scholar
  110. 109.
    M. J. Lamb and L. J. Lilly, Induction of recessive lethals in Drosophila melanogaster by aflatoxin Bi, Mutat. Res. 11, 430 (1971).PubMedGoogle Scholar
  111. 110.
    N. G. Brink, The effect of cyanide and azide on the mutagenic activity of the pyrrolizidine alkaloid heliotrine in Drosophila melanogaster, Z. Vererbungsl. 94, 331 (1963).PubMedGoogle Scholar
  112. 111.
    N. G. Brink, The mutagenic activity of heliotrine in Drosophila. 1. Complete and mosaic sex-linked lethals, Mutat. Res. 3, 66 (1966).Google Scholar
  113. 112.
    N. G. Brink, The mutagenic activity of the pyrrolizidine alkaloid heliotrine in Drosophila melanogaster. II. Chromosome rearrangements. Mutat. Res. 8, 138 (1969).Google Scholar
  114. 113.
    A. M. Clark, The mutagenic activity of some pyrrolizidine alkaloids in Drosophila, Z. Vererbungsl. 91, 74 (1960).PubMedGoogle Scholar
  115. 114.
    A. M. Clark, The brood pattern of sensitivity of theDrosophila testis to the mutagenic action of heliotrine, Z. Vererbungsl. 94, 115 (1963).Google Scholar
  116. 115.
    A. D. Tates, Cytodifferentiation during spermatogenesis in Drosophila melanogaster. Thesis, University of Leiden (1971).Google Scholar
  117. 116.
    A. Loveless,”Genetic and Allied Effects of Alkylating Agents,” Pennsylvania State University Pressxx (1966).Google Scholar
  118. 117.
    H. Lüers and G. Röhrborn, Chemische Konstitution und mutagene Wirkung. III. Äthylenimine, Mutat. Res. 2, 29 (1968).Google Scholar
  119. 118.
    E. Vogel and J. L. R. Chandler, Mutagenicity testing of cyclamate and some pesticides in Drosophila melanogaster, Experientia 30, 621 (1974).Google Scholar
  120. 119.
    L. W. Wattenberg and J. L. Leong, Histochemical demonstration of reduced pyridine nucleotide dependent polycyclic hydrocarbon metabolizing systems, J. Histochem. Cytochem. 10, 412 (1962).Google Scholar
  121. 120.
    M. Demerec, B. Wallace, E. M. Witkin, and G. Bertani, The gene, Carnegie Inst. Washington Yearb. 48, 156 (1949).Google Scholar
  122. 121.
    O. G. Fahmy and M.J. Fahmy, Specific genetic deletions by a carcinogenic hydrocarbon in Drosophila, Nature (London) 224, 1328 (1969).Google Scholar
  123. 122.
    O. G. Fahmy and M. J. Fahmy, Genetic deletions at specific loci by polycyclic hydrocarbons in relation to carcinogenesis, Int. J. Cancer 6, 250 (1970).PubMedGoogle Scholar
  124. 123.
    O. G. Fahmy and M.J. Fahmy, Gene elimination in carcinogenesis: Reinterpretation of the somatic mutation theory, Cancer Res. 30, 195 (1970).PubMedGoogle Scholar
  125. 124.
    O. G. Fahmy and M. J. Fahmy, Induction of bobbed (bb) mutations by polycyclic aromatic carcinogens in Drosophila, Mutat. Res. 9, 239 (1970).Google Scholar
  126. 125.
    O. G. Fahmy and M. J. Fahmy, Mutagenic selectivity for the RNA-forming genes in relation to the carcinogenicity of alkylating agents and polycyclic aromatics, Cancer Res. 32, 550(1972).PubMedGoogle Scholar
  127. 125.
    O. G. Fahmy and M. J. Fahmy, Mutagenic properties of N-acetyl-2-aminofluorene and its metabolites in relation to the molecular mechanisms of carcinogenesis. Int. J. Cancer 9, 284 (1972).Google Scholar
  128. 127.
    O. G. Fahmy, M. J. Fahmy, Genetic properties of substituted derivatives of N-methyl-4-aminobenzene in relation to azo-dye carcinogenesis. Int. J. Cancer 10, 194 (1972).PubMedGoogle Scholar
  129. 128.
    O. G. Fahmy and M. J. Fahmy, Mutagenic properties of benzo(a)pyrene and its methylated derivatives in relations to the molecular mechanisms of hydrocarbon carcinogenesis. Cancer Res. 33, 302 (1973).PubMedGoogle Scholar
  130. 129.
    O. G. Fahmy and M. J. Fahmy, Oxidative activation of benz(a)anthracene and methylated derivatives in mutagenesis and carcinogenesis. Cancer Res. 33, 2354 (1973).PubMedGoogle Scholar
  131. 130.
    J. W. Cramer, J. A. Miller, and E. C. Miller, N-hydroxylation: A new metabolic reaction observed in the rat with the carcinogen 2-acetylaminofluorene, J. Biol. Chem. 235, 885 (1960).PubMedGoogle Scholar
  132. 131.
    J. A. Miller, J. W. Cramer and E. C. Miller, The N- and ring-hydroxylation of 2-acetylaminofluorene during carcinogenesis in the rat. Cancer Res. 20, 950 (1960).PubMedGoogle Scholar
  133. 132.
    J. R. De Baun, J. Y. Rowley, E. C. Miller, and J. A. Miller, Sulfotransferase activation of N-hydroxy-2-acetylaminofluorene in rodent livers susceptible and resistant to this carcinogen, Proc. Soc. Exp. Biol. Med. 129, 268 (1968).Google Scholar
  134. 133.
    J. R. De Baun, E. C. Miller, and J. A. Miller, N-hydroxy-2-acetylaminofluorene sulfotransferase: Its probable role in carcinogens and in protein (methion-j-yl) binding in rat liver. Cancer Res. 30, 577 (1970).Google Scholar
  135. 134.
    J. H. Weisburger, R. S. Yamamoto, P. H. Grantham, and E. K. Weisburger, Evidence that sulphate esters are key ultimate carcinogens from N-hydroxy-N-2-fluorenylacetamide, Proc. Am. Assoc. Cancer Res. 11, 82 (1970).Google Scholar
  136. 135.
    R. J. Srám, The differences in the spectra of genetic changes in Drosophila melanogaster induced by chemosterilants TEPA and HEMPA, Folia Biol. (Prague) 18, 139 (1972).Google Scholar
  137. 136.
    O. G. Fahmy and M. J. Fahmy, Mutagenicity in the sperm of Drosophila and the structure of the “nitrogen-mustard” molecule, Heredity 15, 115 (1960).Google Scholar
  138. 137.
    E. R. Felix and V. M. Salceda, A technique for microinjection in Drosophila, Drosophila Inform. Serv. 39, 135 (1964).Google Scholar
  139. 137a.
    E. R. Felix and R. Rodriguez, A microinjection technique for Drosophila, Drosophila Inform. Serv. 43, 180 (1968).Google Scholar
  140. 138.
    P. Mollet and F. E. Würgler, An apparatus to inject large numbers of Drosophila with constant amounts of fluid within a short time, Drosophila Inform. Service 50, 202 (1973).Google Scholar
  141. 139.
    R. L. Seecof, An injection apparatus for Drosophila, Drosophila Inform. Serv. 41, 185 (1966).Google Scholar
  142. 140.
    G. A. Sega and W. R. Lee, A vacuum injection technique for obtaining uniform dosages in D. melanogaster, Drosophila Inform. Serv. 45, 179 (1970).Google Scholar
  143. 141.
    A. J. Stocker, A simple microinjection apparatus forDrosophila, Drosophila Inform. Serv. 44, 124 (1969).Google Scholar
  144. 142.
    L. W. Shivertaker, The microinjection of Drosophila larvae, Drosophila Inform. Serv. 45, 188 (1970).Google Scholar
  145. 143.
    E. B. Lewis and F. Bacher, Method of feeding ethyl methane sulfonate (EMS) to Drosophila males, Drosophila Inform. Serv. 43, 193 (1968).Google Scholar
  146. 144.
    H. Lliers, Untersuchung iiber die Mutagenitat des Triäthylenmelamin (TEM) an Drosophila melanogaster, Archiv Geschwulstforschung 6, 11 (1953).Google Scholar
  147. 145.
    E. Vogel and H. Lüers, A comparison of adult feeding to injection in D. melanogaster, Drosophila Inform. Serv. 51, 113 (1974).Google Scholar
  148. 146.
    S. K. Hotchkiss and J. K. Lim, Mutagenic specificity of ethyl methanesulfonate affected by treatment methods, Drosophila Inform. Serv. 43, 116 (1968).Google Scholar
  149. 147.
    J. K. Lim and L. A. Snyder, The mutagenic effects of two monofunctional alkylating chemicals on mature spermatozoa of Drosophila, Mutat. Res. 6, 129 (1968).Google Scholar
  150. 148.
    Y. Fujita and U. Nakao, A test of mutagenicity and chromosome breaking ability of 4-nitroquinoline-N-oxide in D. melanogaster, Drosophila Inform. Serv. 37, 80 (1963).Google Scholar
  151. 149.
    Y. Nakao and Y. Morioka, A test of mutagenicity of 4-nitroquinoline-N-oxide in D. melanogaster, Drosophila Inform. Serv. 37, 110 (1963).Google Scholar
  152. 150.
    A. G. A. C. Knaap, and P. G. N. Kramers, Mutagenicity of hycanthone in Drosophila melanogaster, Mutat. Res. 22, 55 (1974).PubMedGoogle Scholar
  153. 151.
    G. A. Sega, P. A. Gee, and W. R. Lee, Dosimetry of the chemical mutagen ethyl methane sulfonate in spermatozoa DNA from Drosophila melanogaster, Mutat. Res. 16, 203 (1972).PubMedGoogle Scholar
  154. 152.
    D. L. Lindsley and E. H. Grell, Genetic variations of Drosophila melanogaster, Carnegie Inst. Washington Pubi, 627, 472 pp (1968).Google Scholar
  155. 153.
    C. Ramel, ed., Evolution of genetic risks of environmental chemicals, Ambio Special Report, Royal Swedish Academy of Sciences, No. 3 (1972), University of Stockholm.Google Scholar
  156. 154.
    Ch. Auerbach, Past achievements and future tasks of research in chemical mutagenesis, in Genetics Today (S. J. Geerts, ed.). Vol. 2, p. 275, Pergamon, London (1965).Google Scholar
  157. 155.
    I. H. Herskowitz, The incidence of chromosomal rearrangements and recessive lethal mutations following treatment of mature Drosophila sperm with 2, 4, 6-tri(ethylenimino)-1,3,5-triazine, Genetics 40, 574 (1955).Google Scholar
  158. 156.
    I. H. Herskowitz, Mutagenesis in mature Drosophila spermatozoa by “triazine” applied in vaginal douches, Genetics 41, 605 (1956).PubMedGoogle Scholar
  159. 157.
    W. E. Ratnayake, Effects of storage on dominant lethals induced by alkylating agents (triethylene melamine and ethylenimine), Mutat. Res. 5, 271 (1968).PubMedGoogle Scholar
  160. 158.
    W. Ratnayake, C. Strachan, and C. Auerbach, Genetical analysis of the storage effect of tiethylene melamine (TEM) on chromosome breakage in Drosophila, Mutat. Res. 4, 380 (1967).PubMedGoogle Scholar
  161. 159.
    A. Schalet, The relationship between the frequency of nitrogen mustard induced translocations in mature sperm of Drosophila and utilization of sperm by females, Genetics 40, 534 (1955).Google Scholar
  162. 160.
    H. Slizynska, The progressive approximation, with storage, of the spectrum of TEM-induced chromosomal changes in Drosophila sperm to that found after irradiation, Mutat. Res. 8, 165 (1969).PubMedGoogle Scholar
  163. 161.
    L. A. Snyder, Evidence of an essential difference between point mutations and chromosome breaks induced by triethylene melamine in Drosophila spermatozoa, Z. Vererbungsl. 94, 182 (1963).PubMedGoogle Scholar
  164. 162.
    W. A. F. Watson, Evidence of an essential difference between the genetical effects of mono- and bifunctional alkylating agents, Z. Vererbungsl. 95, 374 (1964).PubMedGoogle Scholar
  165. 163.
    W. A. F. Watson, Further evidence of an essential difference between the genetical effects of mono- and bifunctional alkylating agents, Mutat. Res. 3, 455 (1966).PubMedGoogle Scholar
  166. 164.
    S. Abrahamson, W. C. Kiriazis, and E. M. Sabol, A storage effect of ethylmethanesulfonate (EMS) on the induction of translocations in Drosophila sperm, Drosophila Inform. Serv. 44, 110 (1969).Google Scholar
  167. 165.
    R. J. Srâm The effect of storage on the frequency of dominant lethals in Drosophila melanogaster. Mol. Gen. Genet. 106, 286 (1970).PubMedGoogle Scholar
  168. 166.
    R. J. Srâm, The effect of storage on the frequency of translocations in Drosophila melanogaster, Mutat. Res. 9, 243 (1970).PubMedGoogle Scholar
  169. 167.
    C. Auerbach and E. M. Sonbati, Sensitivity of Drosophila testis to the mutagenic action of mustard gas, Z. Vererbungsl. 91, 237 (1960).PubMedGoogle Scholar
  170. 168.
    T. Alderson, Ethylation versus methylation in mutation ofEscherichia coli and Drosophila, Nature 203, 1404 (1964).PubMedGoogle Scholar
  171. 169.
    T. Alderson and M. Pelecanos, The mutagenic activity of diethyl sulphate in Drosophila melanogaster. II. The sensitivity of the immature (larval) and adult testis, Mutat. Res. 1, 182 (1964).Google Scholar
  172. 170.
    A. H. Khan, Effect of storage of alkylated chromosomes on the mutagenic effectiveness of monofunctional alkylation, Mutat. Res. 8, 565 (1969).PubMedGoogle Scholar
  173. 171.
    M. Pelecanos, Induction of cross-overs, autosomal recessive lethal mutations, and reciprocal translocations in Drosophila after treatment with diethyl sulfate, Nature (London) 210, 1294 (1966).Google Scholar
  174. 172.
    I. A. Rapoport, On the mutagenic action of dimethyl and diethyl sulphate, Dokl. Akad. Nauk SSSR 12, 12 (1947).Google Scholar
  175. 173.
    I. A. Rapoport, Chemical mutations in sex-chromosomes with a frequency above fifty per cent and increased proportions of semi-lethals, Dokl. Biol. Sci. 141, 1476 (1961).Google Scholar
  176. 174.
    S. S. Epstein and H. Shafner, Chemical mutagens in the human environment. Nature 219, 385 (1968).PubMedGoogle Scholar
  177. 175.
    P. Propping, C. Röhrborn, and W. Buselmaier, Comparative investigations on the chemical induction of point mutations and dominant lethal mutations in mice, Mol. Gen. Genet. 117, 197 (1972).PubMedGoogle Scholar
  178. 176.
    P. K. Datta and E. Schleiermacher, The effects of Cytoxan on the chromosomes of mouse bone marrow, Mutat. Res. 8, 623 (1969).PubMedGoogle Scholar
  179. 177.
    G. Röhrborn and I. Hansmann, Induced chromosome aberrations in unfertilized oocytes of mice. Hum. Genet. 13, 184 (1971).Google Scholar
  180. 178.
    E. Schleiermacher, Uber den Einfluss von Trenimon und Endoxan auf die Meiose der männlichen Maus. II. Cytogenetische Befunde nach Behandlung mit Trenimon und Endoxan, Hum. Genet. 3, 134 (1966).Google Scholar
  181. 179.
    W. Schmid, D. T. Arakaki, N. A. Breslau, and J. C. Culbertson, The Chinese hamster bone marrow as anin vivo test system. I. Cytogenetic results on basic aspects of the methodology, obtained with alkylating agents, Hum. Genet. 11, 103 (1971).Google Scholar
  182. 180.
    W. M. Generoso, W. L. Russell, Sandra W. Huff, Sandra K. Stocet, and D. C. Crosslee, Effects of dose on the induction of dominant-lethal mutations and heritable translocations with ethyl methanesulfonate in male mice. Genetics 77, 741 (1974).PubMedGoogle Scholar
  183. 181.
    B. E. Matter and W. M. Generoso, Effects of dose on the induction of dominant lethal mutations with triethylene melamine in male mice. Genetics 77, 753 (1974).PubMedGoogle Scholar
  184. 182.
    B. E. Matter, I. Jaeger, and J. Grauwiler, Experimental model systems in toxicology and their significance in man, Excerpta Med. Int. Congr. Ser. 311, 275 (1973).Google Scholar
  185. 183.
    B. E. Matter and J. Grauwiler, Micronuclei in mouse bone-marrow cells. A simplein vivo model for the evaluation of drug-induced chromosomal aberrations, Mutat. Res. 23, 239 (1973).Google Scholar
  186. 184.
    C. Auerbach, “Mutation. Part I. Methods,” p. 20, Oliver and Boyd, Edinburgh and London (1962).Google Scholar
  187. 185.
    A. J. Bateman and S. S. Epstein, Dominant lethal mutations in mammals, in:“Chemical Mutagens” (A. Hollaender, ed.), p. 541, Plenum Press, New York (1971).Google Scholar
  188. 186.
    G. Pontecorvo, The problem of dominant lethals, J. Genet. 43, 295 (1942).Google Scholar
  189. 187.
    S. Abrahamson and I. H. Herskowitz, Induced changes in female germ cells of Drosophila. II. Oviposition rate and egg mortality in relation to intensity and dosage of X-rays applied to oocytes. Genetics 42, 405 (1957).PubMedGoogle Scholar
  190. 188.
    K. Sankaranarayanan, The effects of nitrogen and oxygen treatments on the frequencies of X-ray-induced dominant lethals and on the physiology of the sperm in Drosophila melanogaster, Mutat. Res. 4, 641 (1967).PubMedGoogle Scholar
  191. 189.
    J. D. Telfer, An improved technique for dominant lethal studies in Drosophila, Am. Nat. 88, 117 (1954).Google Scholar
  192. 190.
    F. E. Würgler, U. Petermann, and H. Ulrich, A refined test for X-ray induced dominant lethals in Drosophila, Experientia 24, 1293 (1968).Google Scholar
  193. 191.
    O. G. Fahmy and M. J. Fahmy, Cytogenetic analysis of the action of carcinogens and tumor inhibitors in Drosophila melanogaster. II. The mechanism of induction of dominant lethals by 2,4,6-triethyleneimino-l,3,5-triazine, J. Genet. 52, 603 (1954).Google Scholar
  194. 192.
    G. E. Nasrat, W. D. Kaplan, and C. Auerbach, A quantitative study of mustard gas induced chromosome breaks and re-arrangements in Drosophila melanogaster. Z. Indukt. Abstamm. Vererbungsl. 86, 249 (1954).PubMedGoogle Scholar
  195. 193.
    L. A. Snyder and I. I. Oster, A comparison of genetic changes induced by a monofunctional and a polyfunctional alkylating agent in Drosophila melanogaster, Mutat. Res. 1, 437 (1964).Google Scholar
  196. 194.
    A. J. Bateman and A. C. Chandley, The sensitivity of the male germ cells ofDrosophila to methyl methanesulfonate. Heredity (London) 19, 711 (1964).Google Scholar
  197. 195.
    E. Vogel, Strong antimutagenic effects of fluoride on mutation induction by trenimon and l-phenyl-3, 3-dimethyltriazene in Drosophila melanogaster, Mutat. Res. 20, 339 (1973).PubMedGoogle Scholar
  198. 196.
    R. Slacik-Erben and G. Obe, Suppressive activity by fluoride on the induction of chromosome aberrations in human cells in vitro with alkylating agents, Mutat. Res. 19, 369 (1973).PubMedGoogle Scholar
  199. 197.
    R. N. Mukherjee and F. H. Sobels, The effect of sodium fluoride and iodoacetamide on mutation induction by X-irradiation in mature spermatozoa of Drosophila, Mutat. Res. 6, 217 (1968).Google Scholar
  200. 198.
    E. Vogel, Mutagenitatsuntersuchungen mit DDT und den DDT-Metaboliten DDE, DDD, DDOM und DDA an Drosophila melanogaster, Mutat. Res. 16, 157 (1972).Google Scholar
  201. 199.
    E. Vogel, Mutagenic activity of the insecticide oxydemetonmethyl in a resistant strain of Drosophila melanogaster, Experientia 30, 396 (1974).Google Scholar
  202. 200.
    F. H. Sobels, A comparison of the mutagenic effects of chemicals and ionizing radiation, in “Radiation Research—Biomedical, Chemical and Physical Perspectives,” 5th International Congress of Radiation Research, Seattle, Washington, July 14–20, 1974. Academic Press, New York, in press.Google Scholar
  203. 201.
    A. M. Clark, Mutagenic activity of the alkalid heliotrine in Drosophila, Nature (London) 183, 731 (1959).Google Scholar
  204. 202.
    L. M. Cook and A. C. E. Holt, Mutagenic activity in Drosophila of two pyrrolizidine alkaloids, J. Genet. 59, 273 (1966).Google Scholar
  205. 203.
    W. J. Burdette, Tumor incidence and lethal mutation rate in Drosophila treated with 20-methylcholanthrene, Cancer 72, 201 (1952).Google Scholar
  206. 204.
    R. J. Srám, The difference in the spectra of genetic changes in Drosophila melanogaster induced by chemosterilants TEPA and HEMPA, Folia Biol. (Prague) 18, 139 (1972).Google Scholar
  207. 205.
    E. A. Carlson and I.I. Oster, Chemical-mutagen induced mosaicism at the dumpy locus, Genetics 46, 856 (1961) Google Scholar
  208. 206.
    E. A. Carlson and I.I. Oster, Comparative mutagenesis of the dumpy locus in Drosophila melanogaster. II. Mutational mosaicism induced without apparent breakage by a monofunctional alkylating agent. Genetics, 47, 561 (1962).PubMedGoogle Scholar
  209. 207.
    J. L. Southin, An analysis of eight classes of somatic and gonadal mutation at the dumpy locus in Drosophila melanogaster, Mutat. Res. 3, 54 (1966).PubMedGoogle Scholar
  210. 208.
    I. I. Oster and E. Pooley, A comparison of the mutagenic effects of monofunctional and polyfunctional alkylating agents, Genetics 45, 1004 (1960).Google Scholar
  211. 209.
    L. S. Browning, Mutational spectrum in Drosophila after injection with nitrosoguanidine. Genetics 60, 165 (1968).Google Scholar
  212. 210.
    L. S. Browning, The mutational spectrum produced in Drosophila by N-methyl-N-nitro-N-nitrosoguanidine, Mutat. Res. 8, 157 (1969).PubMedGoogle Scholar
  213. 211.
    A. H. Khan, The mutagenic effect of nitrosoguanidine in Drosophila, Drosophila Inform. Serv. 43, 112(1968).Google Scholar
  214. 212.
    O. G. Fahmy and M. J. Bird, Chromosome breaks among recessive lethals induced by chemical mutagens in Drosophila melanogaster, Heredity 6 (Suppl.), 149 (1953).Google Scholar
  215. 213.
    O. G. Fahmy and M. J. Fahmy, Cytogenetic analysis of the actions of carcinogens and tumour inhibitors in Drosophila melanogaster. III. Chromosome structural changes induced by 2,4,6-triethylenimino-l,3,5-triazine, J. Genet. 53, 181 (1955).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • E. Vogel
    • 1
  • F. H. Sobels
    • 1
  1. 1.Department of Radiation Genetics and Chemical Mutagenesis (Sylvius Laboratory)State University of LeidenThe Netherlands

Personalised recommendations