Numerical Sex-Chromosome Anomalies in Mammals: Their Spontaneous Occurrence and Use in Mutagenesis Studies

  • Liane Brauch Russell
Part of the Chemical Mutagens book series


Mutagenesis testing in intact mammals is increasingly becoming a prerequisite to any decision making that involves risk estimates. While the production of dominant lethals has been widely used as a convenient indicator of chromosomal damage, the interpretation of comparative experiments employing this method may be complex, especially when females are exposed and mutagenic effects must be distinguished from physiological ones acting via the mother. For this reason, other simple methods for measuring inherited chromosomal damage in the intact mammal have been developed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. L. Russell, Liane Brauch Russell, and Josephine Gower, Exceptional inheritance of a sex-linked gene in the mouse explained on the basis that the X/O sex-chromosome constitution is female, Proc. Nat. Acad. Sci. USA 45, 554–560 (1959).PubMedCrossRefGoogle Scholar
  2. 2.
    W. J. Welshons and Liane Brauch Russell, The Y-chromosome as the bearer of male determining factors in the mouse, Proc. Nat. Acad. Sci. USA 45, 560–566 (1959).PubMedCrossRefGoogle Scholar
  3. 3.
    C. E. Ford, K. W. Jones, P. E. Polani, J. C. de Almeida, and J. H. Briggs, A sex-chromosome anomaly in a case of gonadal dysgenesis (Turners syndrome), Lancet 1, 711–713 (1959).Google Scholar
  4. 4.
    Anne McLaren, New evidence of unbalanced sex-chromosome constitutions in the mouse. Genet. Res. 1, 253–261 (1960).CrossRefGoogle Scholar
  5. 5.
    Liane Brauch Russell and Ernest H. Y. Chu, An XXY male in the mouse, Proc. Nat. Acad Sci. USA 47, 571–575 (1961).PubMedCrossRefGoogle Scholar
  6. 6.
    P. A. Jacobs and J. A. Strong, A case of human intersexuality having a possible XXY sex-determining mechanism, Nature 183, 302–303 (1959).PubMedCrossRefGoogle Scholar
  7. 7.
    B. M. Cattanach, A chemically-induced variegated-type position effect in the mouse, Z. Vererbungsl. 92, 165–182 (1961).PubMedGoogle Scholar
  8. 8.
    S. Ohno and M. F. Lyon, X-linked testicular feminization in the mouse as a non-inducible regulatory mutation of the Jacob-Monod type, Clin. Genet. 1, 121–127 (1970).CrossRefGoogle Scholar
  9. 9.
    M. F. Lyon, Gene action in the X-chromosome of the mouse (Mus musculus L.), Nature, London 190, 372–373 (1961).CrossRefGoogle Scholar
  10. 10.
    Liane Brauch Russell, Genetics of mammalian sex chromosomes, Science 133, 1795–1803 (1961).PubMedCrossRefGoogle Scholar
  11. 11.
    Liane Brauch Russell, Mammalian X-chromosome action: inactivation limited in spread and in region of origin. Science 140, 976–978, (1963).PubMedCrossRefGoogle Scholar
  12. 12.
    Liane B. Russell, Another look at the single-active-H hypothesis, Trans. N. Y. Acad. Sci. 26, 726–736 (1964).PubMedCrossRefGoogle Scholar
  13. 13.
    Eva M. Eicher, X-autosome translocations in the mouse: total inactivation versus partial inactivation of the X chromosome. Adv. Genet. 15, 175–259 (1970).PubMedCrossRefGoogle Scholar
  14. 14.
    Mary F. Lyon, Mechanisms and evolutionary origins of variable X-chromosome activity ir mammals, Proc. R. Soc. London Ser. B. 187, 243–268 (1974).CrossRefGoogle Scholar
  15. 15.
    B. M. Cattanach, XO mice, Genet. Res. 3, 487–490 (1962).CrossRefGoogle Scholar
  16. 16.
    T. Morris, The XO and OY chromosome constitutions in the mouse. Genet. Res. 12, 125–137 (1968).PubMedCrossRefGoogle Scholar
  17. 17.
    Liane Brauch Russell, unpublished.Google Scholar
  18. 18.
    E. P. Evans, personal communication (1970).Google Scholar
  19. 19.
    M. H. Kaufman, Non-random segregation during mammalian oogenesis. Nature 238, 465–466 (1972).PubMedCrossRefGoogle Scholar
  20. 20.
    Patricia A. Jacobs, Chromosome abnormalities and fertility in man, in “The Genetics of the Spermatozoon,” Proceedings of an International Symposium, Edinburgh, Scotland, August 16–20, 1971 (R. A. Beatty and S. Gluecksohn-Waelsch, eds.), pp. 346–358, Edinburgh and New York (1972).Google Scholar
  21. 21.
    M. G. Kerr, Chromosome anomalies and pregnancy waste, J. Reprod. Pert. 12, 421 (1966).Google Scholar
  22. 22.
    Mary F. Lyon and Susan G. Hawker, Reproductive lifespan in irradiated and unirradiated chromosomally XO mice. Genet. Res. 21, 185–194 (1973).PubMedCrossRefGoogle Scholar
  23. 23.
    E. F. Oakberg, Effect of 25 R of X-rays at 10 days of age on oocyte numbers and fertility of female mice, in “Radiation and Ageing” (P. J. Lindop and G. A. Sacher, eds.), pp. 293–306, Taylor and Francis, Ltd., London (1966).Google Scholar
  24. 24.
    D. H. Carr, R. A. Haggar, and A. G. Hart, Germ cells in the ovaries of XO female infants, Am. J. Clin. Pathol. 49, 521–526 (1968).PubMedGoogle Scholar
  25. 25.
    Hoi-Sen Yong, Presumptive X monosomy in black rats from Malaya, Nature 232, 484–485 (1971).CrossRefGoogle Scholar
  26. 26.
    T. Sharma and Rajiva Raman, An XO female in the Indian mole rat, J. Hered. 62, 384–387 (1971).PubMedGoogle Scholar
  27. 27.
    N. O. Bianchi and J. R. Contreras, The chromosomes of the field mouse Akodon azarae (Cricetidae, Rodentia) with special reference to sex chromosome anomalies. Cytogenetics 6, 306–313 (1967).PubMedCrossRefGoogle Scholar
  28. 28.
    N. Nes, Betydmingen av kromosomaberrasjoner hos dyr, Forsk. Fors. Landbruket 19, 393–410(1968).Google Scholar
  29. 29.
    G. Weiss, R. F. Weick, E. Knobil, S. R. Wolman, and F. Gorstein, An X-O anomaly and ovarian dysgenesis in a Rhesus monkey. Folia Primatol. 19, 24–27 (1973).PubMedCrossRefGoogle Scholar
  30. 30.
    D. E. Norby, G. A. Hegreberg, H. C. Thuline, and D. Findley, An XO cat, Cytogenet. Cell Genet. 13, 448–453.Google Scholar
  31. 31.
    Roy Robinson, The Assortment and preferential mating in the breeding of German fancy cats. Heredity 25, 207–216 (1970).CrossRefGoogle Scholar
  32. 32.
    C. J. Epstein, Mammalian oocytes: X chromosome activity, Science 163, 1078–1079 (1969).PubMedCrossRefGoogle Scholar
  33. 33.
    G. W. Rieck, H. Höhn, and A. Herzog, X-trisomie beim Rind mit Anzeichen familiärer Disposition für Meiosestörungen, Cytogenetics 9, 401–409 (1970).PubMedCrossRefGoogle Scholar
  34. 34.
    J. H. Heller, Human chromosome abnormalities as related to physical and mental dysfunction. J. Hered. 60, 239–248 (1969).PubMedGoogle Scholar
  35. 35.
    A. A. Sandberg, G. F. Koepf, T. Ishihara, and T. S. Hauschka, An XYY human male, Lancet ii, 488–489 (1961).Google Scholar
  36. 36.
    B. M. Cattanach and C. E. Pollard, An XYY sex-chromosome constitution in the mouse. Cytogenetics 8, 80–86 (1969).PubMedCrossRefGoogle Scholar
  37. 37.
    E. Hook, Behavioral implications of the human XYY genotype, Science 179, 139–150 (1973).PubMedCrossRefGoogle Scholar
  38. 38.
    Barbara J. Culliton, XYY: Harvard researcher under fire stops newborn screening, Science 188, 1284–1285 (1975).CrossRefGoogle Scholar
  39. 39.
    E. P. Evans, C. E. Ford, and A. G. Searle, A 39, X/41, XYY mosaic mouse, Cytogenetics 8, 87–96 (1969).PubMedCrossRefGoogle Scholar
  40. 40.
    R. Rathenberg and D. Müller, X and Y chromosome pairing and disjunction in a male mouse with an XYY sex-chromosome constitution, Cytogenet. Cell. Genet. 12, 87–92Google Scholar
  41. 41.
    N. L. A. Cacheiro, Margaret S. Swartout, and Liane B. Russell, Causes of sterility in male mice derived from irradiated spermatids or spermatogonia, Oak Ridge Nat. Lab. Biol. Div. Ann. Progr. Rep., June 30, 1974, ORNL-4993, pp. 122–125.Google Scholar
  42. N. L. A. Cacheiro and W. M. Generoso, Mouse News Lett. 53, 52 (1975).Google Scholar
  43. 42.
    N. L. A. Cacheiro, unpublished.Google Scholar
  44. 43.
    Liane Brauch Russell, The use of sex-chromosome anomalies for measuring radiation effects in different germ-cell stages of the mouse, in “Effects of Radiation on Meiotic Systems,” pp. 27–41, IAEA, Vienna (1968).Google Scholar
  45. 44.
    Liane Brauch Russell and Clyde Saylors Montgomery, The incidence of sex-chromosome anomalies following irradiation of mouse spermatogonia with single or fractionated doses of X-rays, Mutat. Res. 25, 367–376 (1974).PubMedCrossRefGoogle Scholar
  46. 45.
    M. C. Herbert and C. F. Graham, Cell determination and biochemical differentiation of the early mammalian embryo, Curr. Top. Dev. Biol. 8, 151–178 (1974).PubMedGoogle Scholar
  47. 46.
    Liane B. Russell, Genetic and functional mosaicism in the mouse, in “The Role of Chromosomes in Development” (Michael Locke, ed.), pp. 153–181, Academic Press, Inc., New York (1964).Google Scholar
  48. 47.
    E. F. Oakberg, Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium, Am. J. Anat. 99, 507–516 (1956).PubMedCrossRefGoogle Scholar
  49. 48.
    K. Borum, Oogenesis in the mouse; a study of the meiotic prophase, Exp. Cell Res. 24, 495–507 (1961).PubMedCrossRefGoogle Scholar
  50. 49.
    P. B. Selby, X-ray induced specific-locus mutation rates in newborn and young mice, Thesis, University of Tennessee-Oak Ridge Graduate School of Biomedical Sciences (1972).Google Scholar
  51. 50.
    T. Pederson and H. Peters, Proposal for a classification of oocytes and follicles in the mouse ovary, Reprod. Pert. 17, 555–557 (1968).CrossRefGoogle Scholar
  52. 51.
    E. F. Oakberg and Patricia D. Tyrrell, Labeling the zona pellucida of the mouse oocyte, Biol. Reprod 12, 477–482 (1975).PubMedCrossRefGoogle Scholar
  53. 52.
    Liane Brauch Russell and W. L. Russell, The sensitivity of different stages in oogenesis to the radiation induction of dominant lethals and other changes in the mouse, in “Progress in Radiobiology,” Proceedings of the Fourth International Conference on Radiobiology, Cambridge, August 1955 (J. S. Mitchell, B. E. Holmes, and C. L. Smith, eds.), pp. 187–192, Oliver and Boyd Ltd., London (1956).Google Scholar
  54. 53.
    I. Hansmann, Chromosome aberrations in metaphase II oocytes; stage sensitivity in the mouse oogenesis to amethopterin and cyclophosphamide, Mutat. Res. 22, 175–191Google Scholar
  55. 54.
    F. W. Luthardt and R. P. Donahue, Pronuclear DNA synthesis in mouse eggs, Exp. Cell Res. 82, 143–151 (1973).PubMedCrossRefGoogle Scholar
  56. 55.
    G. Siracusa, M. Coletta, and V. Monesi, Duplication of DNA during the first cell cycle in the mouse embryo, J. Reprod. Pert. 42, 395–398 (1975).CrossRefGoogle Scholar
  57. 56.
    K. Fredga, A simple technique for demonstration of the chromosomes and mitotic stages in a mammal. Chromosomes from the cornea, Hereditas 51, 268–273 (1964).CrossRefGoogle Scholar
  58. 57.
    O. J. Miller, D. A. Miller, R. E. Kouri, P. W. Allerdice, V. G. Dev, M. S. Grewal, and J. J. Hutton, Identification of the mouse karyotype by quinacrine fluorescence, and tentative assignment of seven linkage groups, Proc. Nat. Acad. Sci. USA 68, 1530–1533 (1971).PubMedCrossRefGoogle Scholar
  59. 58.
    Muriel N. Nesbitt and Uta Francke, A system of nomenclature for band patterns of mouse chromosomes, Chromosoma 41, 145–158 (1973).PubMedCrossRefGoogle Scholar
  60. 59.
    R. R. Race and R. Sanger, Xg and sex chromosome aneuploidy, in “Blood Groups in Man,” 5th ed., pp. 557–571, Blackwell Scientific Publications, Oxford and Edinburgh (1968).Google Scholar
  61. 60.
    W. M. Court Brown, Pamela Law, and P. G. Smith, Sex chromosome aneuploidy and parental age, Ann. Hum. Genet. 33, 1–14 (1969).CrossRefGoogle Scholar
  62. 61.
    Rita J. S. Phillips, S. G. Hawker, and H. J. Moseley, Bare-patches, a new sex-linked gene in the mouse, associated with a high production of XO females. I. A preliminary report of breeding experiments. Genet. Res. 22, 91–99 (1973).PubMedCrossRefGoogle Scholar
  63. 62.
    Rita J. S. Phillips and M. H. Kaufman, Bare-patches, a new sex-linked gene in the mouse, associated with a high production of XO females. IL Investigations into the nature and mechanism of the XO production. Genet. Res. 24, 27–41 (1974).PubMedCrossRefGoogle Scholar
  64. 63.
    E. P. Evans and R. J. S. Phillips, Inversion heterozygosity and the origin of XO daughters of Bpa female mice. Nature, in press.Google Scholar
  65. 64.
    B. M. Kindred, Abnormal inheritance of the sex-linked Tabby gene, Aust. J. Biol. Sci. 14, 415–418 (1961).Google Scholar
  66. 65.
    Wesley K. Whitten, Chromosomal basis for hermaphrodism in mice, in “The Developmental Biology of Reproduction,” The 33rd Symposium of the Society for Developmental Biology (C. L. Markert and J. Papaconstantinou, eds.), pp. 189–205, Academic Press, New York (1975).Google Scholar
  67. 66.
    W. L. Russell et al., unpublished.Google Scholar
  68. 67.
    M. C. Green, Mouse News Lett. 37, 33 (1967).Google Scholar
  69. 68.
    Mary F. Lyon, A true hermaphrodite mouse presumed to be an XO/XY mosaic, Cytogenetics 8, 326–331 (1969).CrossRefGoogle Scholar
  70. 69.
    B. M. Cattanach, A test of distributive pairing between two specific non-homologous chromosomes in the mouse, Cytogenetics 6, 61–11 (1967).CrossRefGoogle Scholar
  71. 70.
    Liane Brauch Russell and Clyde L. Saylors, Factors causing a high frequency of mice having the XO sex-chromosome constitution. Science 131, 1321–1322 (1960).Google Scholar
  72. 71.
    Liane Brauch Russell and Clyde Lee Saylors, Induction of paternal sex-chromosome losses by irradiation of mouse spermatozoa. Genetics 47, 7–10 (1962).PubMedGoogle Scholar
  73. 72.
    Liane Brauch Russell and Clyde L. Saylors, The relative sensitivity of various germ-cell stages of the mouse to radiation-induced nondisjunction, chromosome losses and deficiencies, in “Repair from Genetic Radiation Damage” (F. Sobéis, ed.), pp. 313–342, Pergamon Press, Oxford, London, New York, Paris (1963).Google Scholar
  74. 73.
    A. Leonard and H. Schröder, Incidence of XO mice after X-irradiation of spermatogonia, Molec. Gen. Genet. 101, 116–119 (1968).CrossRefGoogle Scholar
  75. 74.
    W. L. Russell, Elizabeth M. Kelly, Patricia R. Hunsicker, Carolyn M. Vaughan, Georgia M. Guinn, and Elizabeth B. Edwards, Further evidence on the effect of radiation dose rate on the induction of X-chromosome loss in female mice, Oak Ridge Nat. Lab. Biol. Div. Ann. Progr. Rep., June 30, 1971, ORNL-4740, pp. 87–88.Google Scholar
  76. 75.
    W. L. Russell, Elizabeth M. Kelly, Patricia R. Hunsicker, Carolyn M. Vaughan, Georgia M. Guinn, and Elizabeth B. Edwards, Nonlinearity of the dose-frequency curve for radiation induction of X-chromosome loss in female mice, Oak Ridge Nat. Lab. Biol. Div. Ann. Progr. Rep., June 30, 1971, ORNL-4740, p. 88.Google Scholar
  77. 76.
    A. L. Carpena and W. L. Russell, Effect of dose fractionation on the X-ray induction of X-chromosome loss in female mice, Oak Ridge Nat. Lab. Biol. Div. Ann. Progr. Rep., June 30, 1971, ORNL-4740, pp. 88–89.Google Scholar
  78. 77.
    W. L. Russell, Patricia R. Hunsicker, Elizabeth M. Kelly, Carolyn M. Vaughan, and Georgia M. Guinn, Effect of the interval between irradiation and conception on X-chromosome loss in female mice. Oak Ridge Nat. Lab. Biol. Div. Ann. Progr. Rep., June 30, 1972, ORNL-4817, p. 111.Google Scholar
  79. 78.
    W. L. Russell, Patricia R. Hunsicker, Elizabeth M. Kelly, Carolyn M. Vaughan, and Georgia M. Guinn, X-chromosome loss in the offspring of irradiated female mice, Oak Ridge Nat. Lab. Biol. Div. Ann. Progr. Rep., June 30, 1973, ORNL-4915, p. 98.Google Scholar
  80. 79.
    Liane Brauch Russell, Death and chromosome damage from irradiation of preimplantation stages, in “Preimplantation Stages of Pregnancy (Ciba Foundation Symposium)” (G.E.W. Wolstenholme and Maeve O’Connor, eds.), pp. 217–241, J. & A. Churchill, London (1965).Google Scholar
  81. 80.
    Liane Brauch Russell and Clyde Saylors Montgomery, Radiation-sensitivity differences within cell-division cycles during mouse cleavage, Int. J. Rad. Biol. 10, 151–164 (1966).CrossRefGoogle Scholar
  82. 81.
    Liane Brauch Russell, Chromosome aberrations in experimental mammals, in “Progress in Medical Genetics” (A. G. Steinberg and A. G. Beam, eds.). Vol. 2, pp. 230–294, Grune & Stratton, Inc., New York (1962).Google Scholar
  83. 82.
    B. M. Cattanach, Induction of paternal sex-chromosome losses and deletions and of autosomal gene mutations by the treatment of mouse postmeiotic germ cells with triethylenemelamine, Mutat. Res. 4, 73–82 (1967).PubMedCrossRefGoogle Scholar
  84. 83.
    Jean Moutschen, Mutagenesis with methyl methanesulfonate in mouse, Mutat. Res. 8, 581–588 (1969).PubMedCrossRefGoogle Scholar
  85. 84.
    W. M. Generoso, K. T. Cain, and S. W. Huff, Chemical induction of sex-chromosome loss in female mice. Oak Ridge Nat. Lab. Biol. Div. Ann. Progr. Rep., June 30, 1973, ORNL-4915, pp. 111–112.Google Scholar
  86. 85.
    W. L. Russell, Patricia R. Hunsicker, Elizabeth M. Kelly, Carolyn M. Vaughan, and Georgia M. Guinn, Preliminary test of the effect of hycanthone on X-chromosome loss in mice, Oak Ridge Nat. Lab. Biol. Div. Ann. Progr. Rep., June 30, 1974, ORNL-4993, p. 116.Google Scholar
  87. 86.
    William L. Russell and Patricia R. Hunsicker, The use of hycanthone to demonstrate the sensitivity of the X-chromosome loss method in mice. Abstract for Sixth Annual Meeting of Environmental Mutagen Society, May 9–12, 1975, Miami, Florida (in press).Google Scholar
  88. 87.
    W. M. Generoso, F. J. de Serres, Sandra W. Huff, and Katherine T. Cain, Studies on the induction of chromosomal aberrations in mice by hycanthone. Oak Ridge Nat. Lab. Biol. Div. Ann. Progr. Rep., June 30, 1972, ORNL-4817, pp. 125–126.Google Scholar
  89. 88.
    K. E. Suter and W. M. Generoso, Chemical induction of presumed dominant-lethal mutations in postcopulation germ cells of mice. II. Sensitivity of different postcopulation-precleavage stages to three alkylating chemicals, Mutat. Res. 34, 259–270 (1976).PubMedCrossRefGoogle Scholar
  90. 89.
    Liane Brauch Russell and C. Saylors Montgomery, Radiation-induced sex-chromosome abnormalities in female germ-cell stages of the mouse, Genetics 54, 358 (1966).Google Scholar
  91. 90.
    E. L. Crow and R. S. Gardner, Confidence intervals for the expectation of a Poisson variable, Biometrika 46, 441–453 (1959)Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Liane Brauch Russell
    • 1
  1. 1.Biology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations