Transcription Strategy of Coronaviruses: Fusion of Non-Contiguous Sequences During mRNA Synthesis

  • Willy Spaan
  • Hajo Delius
  • Mike A. Skinner
  • John Armstrong
  • Pete Rottier
  • Sjef Smeekens
  • Stuart G. Siddell
  • Bernard van der Zeijst
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 173)


MHV replicates in the cell cytoplasm and viral genetic information is expressed in infected cells as one genomic sized RNA (mRNA1) and six subgenomic mRNAs. The seven RNAs were assumed to have common 3′ ends of the size of RNA7, the smallest RNA. The data reported here, show that this model is too simple and that the mRNAs are composed of a leader and body sequence. Electron microscopic analysis of hybrids formed between single stranded cDNA copied from mRNA7 and genomic RNA or mRNA6 shows that genomic RNA, mRNA6 and mRNA7 have common 5′ terminal sequences. Furthermore, nucleotide sequence analysis shows that the nucleotide sequence of the 5′ end of mRNA7 diverges from the corresponding region of the genome just upstream from the initiation codon of the nucleocapsid gene. Because the synthesis of each mRNA is inactivated by UV irradiation in proportion to its own length, the subgenomic mRNAs are apparently not produced by the processing of larger RNAs. The available data have to be explained by translocation of the polymerase/leader complex to specific internal positions on the negative strand. In this way the leader and body sequences are joined together by a mechanism completely different from conventional RNA splicing but nevertheless giving the same end result.


Leader Sequence mRNA Synthesis Negative Strand Murine Hepatitis Virus Defective Interfere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.W. Beijerinck, Centralbl. Bacteriol. Parasitenk. Abt. II 5:27–33 (1899).Google Scholar
  2. 2.
    D.I. Ivanovsky, Sel.′. Khoz. Lêsov. 169:108–121 (1882).Google Scholar
  3. 3.
    B.E. Butterworth, Curr.Top.Microbiol.Immunol. 77:1–41 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    A.J. Shatkin, Curr.Top.Microbiol.Immunol. 93:1–4 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    A.K. Banerjee, Microbiol. Rev. 44:175–205 (1980).PubMedGoogle Scholar
  6. 6.
    S.J. Flint, Curr.Top.Microbiol.Immunol. 93:47–79 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Baltimore, Bacteriol. Rev. 35:235–241 (1971).PubMedGoogle Scholar
  8. 8.
    H. Garoff, C. Kondor-Koch, H. Riedel, Curr.Top.Microbiol. Immunol. 99:1–50 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    H.F. Lodish, W.A. Braell, A.L. Schwartz, G.J.A.M. Strous, and A. Zilberstein, Int. Rev. Cytol. suppl. 12:247–307 (1981).PubMedGoogle Scholar
  10. 10.
    M.F.G.Schmidt, Curr.Top.Microbiol.Immunol. 102:107–129 (1983).Google Scholar
  11. 11.
    B.W.J. Mahy, Nature 288:536–538 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    S.G. Siddell, H. Wege, and V. ter Meulen, J. gen. Virol. 64:761–776 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    L.S. Sturman and K.V. Holmes, Advances in Virus Research, 28: in press (1983).Google Scholar
  14. 14.
    J.L. Leibowitz, K.C. Wilhelmsen, and C.W. Bond, Virology 114:39–51 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    M.M.C. Lai, C.D. Patton, and S.A. Stohlman, J.Virol. 44:487–492 (1982).PubMedGoogle Scholar
  16. 16.
    M.M.C. Lai, P.R. Brayton, R.C. Armen, C.D. Patton, C. Pugh, and S.A. Stohlman, J.Virol. 39:823–834 (1981).PubMedGoogle Scholar
  17. 17.
    M.M.C. Lai, C.D. Patton, and S.A. Stohlman, J.Virol. 41:557–565 (1982).PubMedGoogle Scholar
  18. 18.
    W.J.M. Spaan, P.J.M. Rottier, M.C.Horzinek, and B.A.M. Van der Zeijst, J.Virol. 42:432–439 (1982).PubMedGoogle Scholar
  19. 19.
    S.G. Siddell, J. gen. Virol. 64:113–125 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    P.J.M. Rottier, W.J.M. Spaan, M.C. Horzinek, and B.A.M. Van der Zeijst, J.Virol. 38:20–26 (1981).PubMedGoogle Scholar
  21. 21.
    J.L. Leibowitz, S.R. Weiss, E. Paavola and C.W. Bond, J. Virol. 43:905–913 (1982).PubMedGoogle Scholar
  22. 22.
    M.M.C. Lai and S.A. Stohlman, J.Virol. 38:661–670 (1981).PubMedGoogle Scholar
  23. 23.
    J. Armstrong, S. Smeekens, and P. Rottier, Nucleic Acids Res. 11:883–891 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    H. Delius, H. Westphal, and N. Axelrod, J.Molec.Biol. 74:677–687 (1972).CrossRefGoogle Scholar
  25. 25.
    H. Garoff and W. Ansorge, Analyt.Biochem. 115:450–457 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Priess, B. Koller, B. Hess, and H. Delius, Molec. gen. Genet. 178:27–34 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    D. Zimmern and P. Kaesberg, Proc. natn. Acad. Sci. U.S.A. 75:4257–4261 (1978).CrossRefGoogle Scholar
  28. 28.
    P.R. Brayton, R.G. Ganges, and S.A. Stohlman, J. gen. Virol. 56:457–460 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    K.C. Wilhemsen, J.L. Leibowitz, C.W. Bond, and J.A. Robb, Virology 110:225–230 (1983).CrossRefGoogle Scholar
  30. 30.
    B.W.J. Mahy, S. Siddell, H. Wege, and V. Ter Meulen, J. gen. Virol. 64:103–111 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    L. Jacobs, W.J.M. Spaan, M.C. Horzinek, and B.A.M. Van der Zeijst, J.Virol. 39:401–406 (1981).PubMedGoogle Scholar
  32. 32.
    S. Fields and G. Winter, Cell 28:303–313 (1982).PubMedCrossRefGoogle Scholar
  33. 33.
    A.M.W. King, D. McCahon, W.R. Slade, and J.W.I. Newman, Cell 29:921–928 (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    S.J. Plotch, M. Bouloy, I. Ulmanen, and R. Krug, Cell 23:847–858 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    J. Perrault, Curr.Topics Microbiol.Immunol. 93:151–207 (1981).CrossRefGoogle Scholar
  36. 36.
    R.D. Lazzarini, J.D. Keene, and M. Schubert, Cell 26:145–154 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    P.R. Brayton, M.M.C. Lai, C.D. Patton, and S.A. Stohlman, J.Virol. 42:847–853 (1982).PubMedGoogle Scholar
  38. 38.
    J.L. Leibowitz, J.R. DeVries, and M.V. Haspel, J.Virol. 42:1080–1087 (1982).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Willy Spaan
    • 1
  • Hajo Delius
    • 2
  • Mike A. Skinner
    • 3
  • John Armstrong
    • 2
  • Pete Rottier
    • 1
  • Sjef Smeekens
    • 1
  • Stuart G. Siddell
    • 3
  • Bernard van der Zeijst
    • 1
  1. 1.Institute of Virology, Veterinary FacultyState UniversityUtrechtThe Netherlands
  2. 2.European Molecular Biology LaboratoryHeidelbergGermany
  3. 3.Institute of VirologyWuerzburgGermany

Personalised recommendations