Antigenic and Polypeptide Structure of Bovine Enteric Coronavirus as Defined by Monoclonal Antibodies

  • J. F. Vautherot
  • J. Laporte
  • M. F. Madelaine
  • P. Bobulesco
  • A. Roseto
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 173)


Bovine enteric coronavirus (BECV), characterized by Stair et al (1972), is now recognized as one of the viral agents that cause acute diarrhoea in young calves (Stair et al, 1972). Virions are large and pleomorphic (100 to 150 nm in diameter) and possess a fringe of characteristically club-shaped peplomers, 20 nm long (Sharpee et al, 1976). Polypeptide analysis revealed 3 major proteins including glycoproteins of high (GP 65/125 — 65,000 and 125,000 daltons in molecular weight) and low (GP25) molecular weight and a phosphorylated protein (VP 50) (King and Brian, 1982; Laporte and Bobulesco, 1981). Two minor glycoproteins have also been described, GP 105 and GP 100 (King and Brian, 1982; J. Laporte, personal communication). Detergent treatment and limited proteolysis of purified virions enabled to localize the structural proteins (King and Brian, 1982; Bobulesco, 1983). The peplomers are mainly constituted of GP 125, a glycoprotein which is reduced to a GP 65 component by 2-Mercaptoethanol (2-ME), and of GP 105 and GP 100. On these outer projections are located the structural sites responsible for haemagglutination and virus to cell interactions. GP 25 is more deeply embedded in the virion envelope and interacts with the internal nucleoprotein (Bobulesco, 1983). VP 50 is an internal phosphoprotein, closely associated with the viral genome (King and Brian, 1982).


Haemagglutination Assay Cytosol Extract Feline Infectious Peritonitis Feline Infectious Peritonitis Virus Murine Hepatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bobulesco, P., 1983, Etude des protéines structurales du coronavirus entéritique bovin. Comparaison structurale et antigénique avec une souche de coronavirus entéritique d’origine humaine Thèse de Doctorat de Troisième Cycle, Université Paris VII, Paris.Google Scholar
  2. Bonner, W.M., and Laskey, R.A., 1974, A film detection method for tritium labelled proteins and nucleic acids in Polyacrylamide gels. Europ. J, of Biochemistry, 46:83.CrossRefGoogle Scholar
  3. Bridger, J.C., Woode, G.N., and Meyling, A., 1978, Isolation of coronaviruses from neonatal calf diarrhoea in Great Britain and Denmark. Vet. Microbiol., 3:101.CrossRefGoogle Scholar
  4. Burstin, S.J., Spriggs, D.R., and Fields, B.N., 1982, Evidence for functional domains on the reovirus type 3 hemagglutinin. Virology, 117:146.PubMedCrossRefGoogle Scholar
  5. Collins, A.R., Knobler, R.L., Powell, H., and Buchmeier, M.J., 1982, Monoclonal antibodies to Murine Hepatitis Virus-4 (Strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology, 119:358.PubMedCrossRefGoogle Scholar
  6. Gerna, G., Battaglia, M., Cereda, P.M., and Passarani, N., 1982, Reactivity of Human Coronavirus OC43 and Neonatal Calf Diarrhoea Coronavirus Membrane-associated antigens. J. gen. Virol., 60:385.PubMedCrossRefGoogle Scholar
  7. Horzinek, M.C., Lutz, H., and Pedersen, N.C., 1982, Antigenic relationships among homologous structural polypeptides of porcine, feline and canine coronaviruses. Infect. Immun., 37 (3):1148.PubMedGoogle Scholar
  8. Kida, H., Brown, L.E., and Webster, R.G., 1982, Biological activity of monoclonal antibodies to operationally defined antigenic regions on the hemagglutinin molecule of A/Seal/ Massachusetts/1/80 (H7N7) Influenza Virus. Virology, 122:38.PubMedCrossRefGoogle Scholar
  9. King, B., and Brian, D.A., 1982, Bovine coronavirus structural proteins. J. Virol. 42(2):700.PubMedGoogle Scholar
  10. Laemmli, U.K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London, 227:680.CrossRefGoogle Scholar
  11. Laporte, J., L’Haridon, R., and Bobulesco, P., 1979, In vitro culture of Bovine Enteric Coronavirus (BEC). Les Colloques de l’INSERM, Entérites virales, 90:99.Google Scholar
  12. Laporte, J., Bobulesco, P., Rossi, F., 1980, Une Lignée cellulaire particulièrement sensible à la réplication du Coronavirus entéritique bovin: les cellules HRT18. C.R. Acad. Sc. Paris, 290, série D:623.Google Scholar
  13. Laporte, J., and Bobulesco, P., 1981, Polypeptide structure of bovine enteric coronavirus: comparison between a wild strain purified from feces and a HRT 18 cell adapted strain in: Biochemistry and Biology of Coronaviruses, V. ter Meulen, S. Siddell and H. Wege ed., Plenum Publishing corp.Google Scholar
  14. Laude, H., 1978, Virus de la peste porcine classique: isolement d’une souche cytolytique à partir de cellules IB-Rs 2. Ann. Microbiol. (Inst. Pasteur). 129 A:553.Google Scholar
  15. L’Haridon, R., Scherrer, R., Vautherot, J.F., La Bonnardière, C., Laporte, J., Cohen, J., 1981, Adaptation d’un isolement de coronavirus entérique bovin à la culture cellulaire et caractérisation de la souche obtenue. Ann. Rech. Vét. 12(3):243.PubMedGoogle Scholar
  16. Mebus, CA., Stair, E.L., Rhodes, M.B., and Twiehaus, M.J., 1973, Neonatal calf diarrhea: propagation, attenuation, and characteristics of a coronavirus-like agent. Am. J. Vet. Res. 34(2):145.PubMedGoogle Scholar
  17. Patel, J.R., Davies, H.A., Edington, N., Laporte, J., and Macnaugton, M.R., 1982, Infection of a calf with the enteric coronavirus strain Paris. Arch. Virol. 73:319.PubMedCrossRefGoogle Scholar
  18. Pedersen, N.C., Ward, J., and Mengeling, W.L., 1978, Antigenic relationship of the Feline Infectious Peritonitis Virus to coronaviruses of other species. Arch. Virol. 58:45.PubMedCrossRefGoogle Scholar
  19. Pocock, D.H., 1978, Effect of sulphydryl reagents on the biological activities, polypeptide composition and morphology of haemagglutinating encephalomyelitis virus. J. gen. Virol. 40:93.PubMedCrossRefGoogle Scholar
  20. Reynolds, D.J., in press, Coronavirus replication in the intestinal and respiratory tracts during experimental and natural infections of calves, in: E.E.C. Seminar on gastro-intestinal diseases in the young pig and calf.Google Scholar
  21. Roseto, A., Vautherot, J.F., Bobulesco, P., et Guillemin, M.C., 1982, Isolement d’hybrides cellulaires sécrétant des anticorps spécifiques du coronavirus entérique bovin. C.R. Acad. Sc. Paris. 294, série III:347.Google Scholar
  22. Sharpee, R.L., Mebus, C.A., and Bass, E.P., 1976, Characterization of a calf diarrheal coronavirus. Am. J. Vet. Res. 37(9):1031.PubMedGoogle Scholar
  23. Siddell, S.G., 1982, Coronavirus JHM: tryptic peptide finger-printing of virion proteins and intracellular polypeptides. J. gen. Virol. 62:259.PubMedCrossRefGoogle Scholar
  24. Stair, E.L., Rhodes, M.B., White, R.G., and Mebus, C.A., 1972, Neonatal calf diarrhea: purification and electron microscopy of a coronavirus-like agent. Am. J. Vet. Res. 33(6):1147.PubMedGoogle Scholar
  25. Storz, J., and Roth, R., 1981, Reactivity of antibodies in human serum with antigens of an enteropathogenic bovine coronavirus. Med. Microbiol. Immunol. 169:169.PubMedCrossRefGoogle Scholar
  26. Thomas, L.H., Gourlay, R.N., Stott, E.J., Howard, C.J., and Bridger, J.C., 1982, A search for new microorganisms in calf pneumonia by the inoculation of gnotobiotic calves. Res. Vet. Sci. 33:170.PubMedGoogle Scholar
  27. Tompkins, W.A.F., Watrach, A.M., Schmale, J.D., Schultz, R.M., and Harris, J.A., 1974, Cultural and antigenic properties of newly established cell strains derived from adenocarcinomas of the human colon and rectum. J. Natl. Cancer Inst. 52(4):1101.PubMedGoogle Scholar
  28. Towbin, H., Staehelin, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA, 76 (9):4350.PubMedCrossRefGoogle Scholar
  29. Vautherot, J.F., 1981, Plaque assay for titration of Bovine Enteric Coronavirus. J. gen. Virol. 56:451.PubMedCrossRefGoogle Scholar
  30. Vautherot, J.F., L’Haridon, R., Scherrer, R., Laporte, J., 1981, Titrage des anticorps anti-coronavirus bovin par la méthode ELISA et 1’immunofluorescence indirecte, in: Réunion de la Société Française de Microscopie. Méthodes de diagnostic rapide.Google Scholar
  31. Volk, W.A., Snyder, R.M., Benjamin, D.C., and Wagner, R.R., 1982, Monoclonal antibodies to the glycoprotein of vesicular stomatitis virus: comparative neutralizing activity. J. Virol. 42:220.PubMedGoogle Scholar
  32. Wege, H., Wege, H., Nagashima, L., and Ter Meulen, V., 1979, Structural polypeptides of the murine coronavirus JHM. J. gen. Virol., 42:37.PubMedCrossRefGoogle Scholar
  33. Weiss, S.R., 1983. Coronaviruses SD and SK share extensive nucleotide homology with murine coronavirus MHV-A59, more than that shared between human and murine coronaviruses. Virology. 126:669.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. F. Vautherot
    • 1
  • J. Laporte
    • 1
  • M. F. Madelaine
    • 1
  • P. Bobulesco
    • 1
  • A. Roseto
    • 2
  1. 1.Station de Recherches de Virologie et d’ImmunologieINRAThiverval-GrignonFrance
  2. 2.Hôpital Saint-LouisUnité INSERM U 107ParisFrance

Personalised recommendations