Pathophysiology of the Enterotoxic and Viral Diarrheas

  • Richard L. Guerrant


As amply documented in other papers in this volume, there is no doubt that diarrheal diseases are the world’s biggest health problem. They constitute the commonest cause of death among young children in the most populous developing countries (Tables I–III).1,2 Although more difficult to quantify, even greater is the impact of 3 to 12 severe, dehydrating illnesses per year on the physical and mental development of those children who survive. Also alarming is the recent “modernization” trend toward reduced breast-feeding in areas where very poor socioeconomic conditions result in a significant lag in the development of adequate water supply and sanitation facilities. The findings in northeastern Brazil of Nations-Shields suggest that the striking mortality of 15 to 25% in the first 5 years of life will likely increase even further as this trend proceeds (M. Nations-Shields, personal communication, 1981).


Small Bowel Adenylate Cyclase Cholera Toxin Guanylate Cyclase Crypt Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Puffer, R. R., and Serrano, C. V. Patterns of Mortality in Childhood. Pan American Sanitary Bureau, Regional Office, World Health Organization, Washington, D.C., 1973.Google Scholar
  2. 2.
    Gordon, J. E., Chitkara, I. D., and Wyon, J. B. Weanling diarrhea. Am. J. Med. Sci. 245:345, 1963.Google Scholar
  3. 3.
    Giannella, R. A., Broitman, S. A., and Zamcheck, N. Influence of gastric acidity on bacterial and parasitic enteric infections: A perspective. Ann. Intern. Med. 78:271, 1973.Google Scholar
  4. 4.
    Bohnhoff, M., Miller, C. P., and Martin, W. R. Resistance of the mouse’s intestinal tract to experimental Salmonella infections. J. Exp. Med. 120:805, 1964.CrossRefGoogle Scholar
  5. 5.
    Mentzing, L. O., and Ringertz, O. Salmonella infection in tourists. 2. Prophylaxis against salmonellosis. Acta Pathol. Microbiol. Scand. 74:405, 1968.CrossRefGoogle Scholar
  6. 6.
    Bartlett, J. G. Antibiotic-associated pseudomembranous colitis. Rev. Infect. Dis. 1:530, 1979.CrossRefGoogle Scholar
  7. 7.
    Formal, S. B., Abrams, G. D., Schneider, H., and Sprinz, H. Experimental Shigella infections VI. Role of the small intestine in an experimental infection in guinea pigs. J. Bacteriol. 85:119, 1963.Google Scholar
  8. 8.
    Higgens, J. A., Code, C. F., and Orvis, A. L. The influence of motility on the rate of absorption of sodium and water from the small intestine of healthy persons. Gastroenterology 31:708, 1956.Google Scholar
  9. 9.
    Jones, G. W. The attachment of bacteria to the surfaces of animal cells. In: Microbial Interactions: Receptors and Recognition, Series B, Vol. 3, J. L. Reissig (Ed.), pp. 139–176 Chapman & Hall, London, 1977.Google Scholar
  10. 10.
    Guerrant, R. L., and Bergman, M. J. Attachment factors among enterotoxigenic Escherichia coli. In: Frontiers of Knowledge in the Diarrheal Diseases, H. D. Janowitz and D. B. Sachar (Eds.). Projects in Health, Montclair, New Jersey, 1979.Google Scholar
  11. 11.
    Smith, H. W., and Linggood, M. A. Observations on the pathogenic properties of the K88, HLY and ENT plasmids of Escherichia coli with special reference to porcine diarrhea. J. Med. Microbiol. 4:467–485, 1971.CrossRefGoogle Scholar
  12. 12.
    Evans, D. G., and Evans, D. J., Jr. New surface-associated heat-labile colonization factor of enterotoxigenic Escherichia coli isolated from adults with diarrhea. Infect. Immun. 19:727–736, 1978.Google Scholar
  13. 13.
    Bergman, M. J., Updike, W. S., Wood, S. J., Brown, S. E., III, and Guerrant, R. L. Attachment factors among enterotoxigenic Escherichia coli from patients with acute diarrhea from diverse geographic areas. Infect. Immun. 32:881–888, 1981.Google Scholar
  14. 14.
    Levine, M. M. and Renneis, M. B. E. coli colonization factor antigen in diarrhea. Lancet ii:534, 1978.CrossRefGoogle Scholar
  15. 15.
    Ulshen, M. H., and Rollo, J. L. Pathogenesis of Escherichia coli gastroenteritis in man— Another mechanism. N. Engl. J. Med. 302:99–101, 1980.CrossRefGoogle Scholar
  16. 16.
    Guerrant, R. L. Yet another pathogenic mechanism for E. coli diarrhea? N. Engl. J. Med 302:113–114, 1980.CrossRefGoogle Scholar
  17. 17.
    Kent, T. H., and Lindenbaum, J. Correlation of jejunal function and morphology in patients with acute and chronic diarrhea in East Pakistan. Gastroenterology 52:972, 1967.Google Scholar
  18. 18.
    Hirschhorn, N., and Molla, A. Reversible jejunal disaccharidase deficiency in cholera and other acute diarrheal diseases. Johns Hopkins Med. J. 125:291, 1969.Google Scholar
  19. 19.
    Lifshitz, F., Coello-Ramierz, P., and Gutierrez-Topete, G. Carbohydrate intolerance in infants with diarrhea. J. Pediatr. 79:760, 1971.CrossRefGoogle Scholar
  20. 20.
    Bishop, R. F., Davidson, G. P., Holmes, I. H., and Ruck, B. J. Virus particles in epithelial cells of duodenal mucosa from children with acute nonbacterial gastroenteritis. Lancet ii:1281, 1973.CrossRefGoogle Scholar
  21. 21.
    Agus, S. G., Dolin, R., Wyatt, R. G., Tousimis, A. J., and Northrup, R. S. Acute infectious nonbacterial gastroenteritis: Intestinal histopathology, histologic and enzymatic alterations during illness produced by Norwalk agent in man. Ann. Intern. Med. 79:18, 1973.Google Scholar
  22. 22.
    Frizzell, R. A., Field, M., and Schultz, S. G. Sodium-coupled chloride transport by epithelial tissues. Am. J. Physiol. 236:F1–F3, 1979.Google Scholar
  23. 23.
    Field, M., Plotkin, G. R., and Silen, W. Effects of vasopressin, theophylline, and cyclic adenosine monophosphate on short-circuit current across isolated rabbit ileal mucosa. Nature (London) 217:469–471, 1968.CrossRefGoogle Scholar
  24. 24.
    Guerrant, R. L., Chen, L. C., and Sharp, G. W. G. Intestinal adenylcyclase activity in canine cholera: Correlation with fluid accumulation. J. Infect. Dis. 125:377–381, 1972.CrossRefGoogle Scholar
  25. 25.
    Nellans, H. N., Frizzell, R. A., and Schultz, S. G. Coupled sodium-chloride influxes across the brush border of rabbit ileum. Am. J. Physiol. 225:467–475, 1973.Google Scholar
  26. 26.
    Field, M., Cholera toxin, adenylate cyclase, and the process of active secretion in the small intestine: The pathogenesis of diarrhea in cholera. In: Physiology of Membrane Disorders, T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil (Eds.), pp. 877–899. Plenum, New York, 1978.CrossRefGoogle Scholar
  27. 27.
    Nellans, H. N., Frizzell, R. A., and Schultz, S. G. Effect of acetazolamide on sodium and chloride transport by in vitro rabbit ileum. Am. J. Physiol. 228:1808–1814, 1975.Google Scholar
  28. 28.
    Klyce, S. D., and Wong, R. K. S. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium. J. Physiol. 266:77–799, 1977.Google Scholar
  29. 29.
    Roggin, G. M., Banwell, J. G., Yardley, J. H., and Hendrix, T. H. Unimpaired response of rabbit jejunum to cholera toxin after selective damage to villus epithelium. Gastroenterology 63:981–989, 1972.Google Scholar
  30. 30.
    DeJonge, H. R. The response of small intestinal villus and crypt epithelium to cholera toxin in rat and guinea pig. Evidence against a specific role of the crypt cells in choleragen-induced secretion. Biochim. Biophys. Acta 381:128–143, 1975.CrossRefGoogle Scholar
  31. 31.
    Holmgren, J., and Lonnroth, I. Structure and function of enterotoxins and their receptors. In: Cholera and Related Diarrheas, O. Ouchterlony and J. Holmgren (Eds.), 43rd Nobel Symposium. S. Karger, Basel, 1980.Google Scholar
  32. 32.
    Gill, D. M., and King, C. A. The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J. Biol. Chem. 250:424–432, 1975.Google Scholar
  33. 33.
    Gill, D. M. Multiple roles of erythrocyte supernatant in the activation of adenylate cyclase by Vibrio cholerae toxin in vitro. J Infect. Dis. 133:S55–S63, 1976.CrossRefGoogle Scholar
  34. 34.
    Hewlett, E. L., Guerrant, R. L., Evans, D. J., Jr., and Greenough, W. G. III. Toxins of Virbro cholerae and Escherichia coli stimulate adenyl cyclase in rat fat cells. Nature 249:371–373, 1974.CrossRefGoogle Scholar
  35. 35.
    Cassel, D., and Selinger, Z. Mechanisms of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site. Proc. Natl. Acad. Sci. (U.S.) 74:3307–3311, 1977.CrossRefGoogle Scholar
  36. 36.
    Cassel, D., and Pfeuffer, T. Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc. Nat. Acad. Sci. (U.S.) 75:2669–2673, 1978.CrossRefGoogle Scholar
  37. 37.
    Guerrant, R. L., Brunton, L. L., Schnaitman, T. C., Rebhun, L. I., and Gilman, A. G. Cyclic adenosine monophosphate and alteration of Chinese hamster ovary cell morphology: A rapid, sensitive in vitro assay for the enterotoxins of Vibrio cholerae and Escherichia coli. Infect. Immun. 10:320–327, 1974.Google Scholar
  38. 38.
    Guerrant, R. L., and Brunton, L. L. Characterization of the Chinese hamster ovary cell assay for the enterotoxins of Vibrio cholerae and Escherichia coli and for antitoxin: Differential inhibition by gangliosides, specific antisera, and toxoid. J. Infect. Dis. 135:720–728, 1977.CrossRefGoogle Scholar
  39. 39.
    Donta, S. T., and King, M. Induction of steroidogenesis in tissue culture by cholera enterotoxin. Nature (New Biol.) 243:246–247, 1973.Google Scholar
  40. 40.
    Donta, S. T., Moon, H. W., and Whipp, S. C. Detection of heat-labile Escherichia coli enterotoxin with the use of adrenal cells in tissue culture. Science 183:334–335, 1974.CrossRefGoogle Scholar
  41. 41.
    DeJonge, H. R. Cyclic nucleotide-dependent phosphorylation of intestinal epithelium proteins. Nature 262:590–593, 1976.CrossRefGoogle Scholar
  42. 42.
    Leitch, G. H., and Amer, M. S. Lanthanum inhibition of V. cholerae and E. coli enterotoxin-induced enterosorption and its effects on intestinal mucosa cyclic adenosine 3′, 5′-monophosphate levels. Infect. Immun. 11:1038–1044, 1975.Google Scholar
  43. 43.
    Holmgren, J., Sange, S., and Lonnroth, I. Reversal of cyclic AMP-mediated intestinal secretion in mice by chlorpromazine. Gastroenterology 75:1103–1108, 1978.Google Scholar
  44. 44.
    Bolton, J. E., and Field, M. Ca Ionophore-stimulated ion secretion in rabbit ileal mucosa; Relation to actions of cyclic 3′, 5′-AMP and carbamylcholine. J. Membr. Biol. 35:159–173, 1977.CrossRefGoogle Scholar
  45. 45.
    Donowitz, M., Asarkof, N., and Pike, G. Calcium dependence of serotonin-induced changes in rabbit ileal electrolyte transport. J. Clin. Invest. 66:341–353, 1980.CrossRefGoogle Scholar
  46. 46.
    Sack, D. A., Merson, M. M., Wells, J. C., Sack, R. B., and Morris, G. K. Diarrhea associated with heat-stable enterotoxin-producing strains of Escherichia coli. Lancet ii:239–244, 1975.CrossRefGoogle Scholar
  47. 47.
    Ryder, R. W., Wachsmuth, I. K., Buxton, A. E., Evans, D. G., DuPont, H. L., Mason, E., and Barrett, F. F. Infantile diarrhea produced by heat-stable enterotoxigenic Escherichia coli. N. Engl. J. Med. 295:849–853, 1976.CrossRefGoogle Scholar
  48. 48.
    Hughes, J. M., Rouse, J. D., Barada, F. A., and Guerrant, R. L. Etiology of summer diarrhea among the Navajo. Am. J. Trop. Med. Hyg. 29:613–619, 1980.Google Scholar
  49. 49.
    Guerrant, R. L., Rouse, J. D., and Hughes, J. M. Turista among the Yale Glee Club in Latin America: Studies of enterotoxigenic bacteria, E. coli serotypes and rotaviruses. Am. J. Trop. Med. Hyg. 29:895–900, 1980.Google Scholar
  50. 50.
    Staples, D. J., Asher, S. E., and Giannella, R. A. Purification and characterization of heat-stable enterotoxin produced by a strain of E. coli pathogenic for man. J. Biol. Chem. 255:4716–4721, 1980.Google Scholar
  51. 51.
    Alderete, J. G., and Robertson, D. C. Purification and chemical characterization of the heat-stable enterotoxin produced by porcine strains of enterotoxigenic Escherichia coli. Infect. Immun. 19:1021–1030, 1978.Google Scholar
  52. 52.
    Pierce, N. F. Differential inhibitory effects of cholera toxoids and gangliosides on the enterotoxins of Vibrio cholerae and Escherichia coli. J. Exp. Med. 137:1009–1023, 1973.CrossRefGoogle Scholar
  53. 53.
    Guerrant, R. L., Hughes, J. M., Chang, B., Robertson, D. C., and Murad, F. Activation of rat and rabbit intestinal guanylate cyclase by the heat-stable enterotoxin of Escherichia coli: Studies of tissue specificity, potential receptors and intermediates. J. Infect. Dis. 142:220–228, 1980.CrossRefGoogle Scholar
  54. 54.
    Burgess, M. N., Bywater, R. J., Cowley, C. M., Mullan, N. A., and Newsome, P. M. Biological evaluation of a methanol-soluble, heat-stable Escherichia coli enterotoxin in infant mice, pigs, rabbits, and calves. Infect. Immun. 21:526–530, 1978.Google Scholar
  55. 55.
    Guerrant, R. L., Ganguly, U., Casper, A. G. T., Moore, E. J., Pierce, N. J., and Carpenter, C. C. J. Effect of Escherichia coli on fluid transport across canine small bowel: Mechanism and time course with enterotoxin and whole bacterial cells. J. Clin. Invest. 52:1707–1714, 1973.CrossRefGoogle Scholar
  56. 56.
    Hughes, J. M., Murad, F., Chang, B., and Guerrant, R. L. Role of cyclic GMP in the action of heat-stable enterotoxin of Escherichia coli. Nature 271:755–756, 1978.CrossRefGoogle Scholar
  57. 57.
    Field, M., Graf, L. G., Jr., Laird, W. F., and Smith, P. L. Heat-stable enterotoxin of Escherichia coli: In vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc. Nat. Acad. Sci. (U.S.) 75:2800–2804, 1978.CrossRefGoogle Scholar
  58. 58.
    Hughes, J. M., Murad, F., and Guerrant, R. L. Studies to elucidate the mechanism of action of heat-stable enterotoxin of Escherichia coli. Clin. Res. 26:524A, 1978.Google Scholar
  59. 59.
    Rao, M. C., Guandalini, S., Laird, W. J., Smith, P. L., and Field, M. Heat-stable enterotoxins: Mechanism of action (Proceedings of the Fifteenth Joint Conference of the U.S.-Japan Cooperative Medical Science Program of Cholera), NIAID, NIH, Bethesda, Maryland, 1979, NIH Publ. No. 80:2003, 1980.Google Scholar
  60. 60.
    Kimura, H., and Murad, F. Subcellular localization of guanylate cyclase—Minireview. Life Sci. 17:837–743, 1975.CrossRefGoogle Scholar
  61. 61.
    Ong, S-H., Whitley, T. H., Stowe, N. W., and Steiner, A. L. Immunohistochemical localization of 3′:5′-cyclic AMP and 3′:5′-cyclic GMP. Proc. Nat. Acad. Sci. (U.S.) 72:2022–2026, 1975.CrossRefGoogle Scholar
  62. 62.
    Dejonge, H. R. The localization of guanylate cyclase in rat small intestinal epithelium. FEBS Lett. 53:237–242, 1975.CrossRefGoogle Scholar
  63. 63.
    Greenberg, R. N., Guerrant, R. L., Chang, B., Robertson, D. C., and Murad, F. Inhibition of E. coli heat-stable enterotoxin (ST) by quinacrine. Biochem. Pharmacol. 31:2005–2009, 1982.CrossRefGoogle Scholar
  64. 64.
    Greenberg, R. N., Murad, F., Chang, B., Robertson, D. C., and Guerrant, R. L. Inhibition of Escherichia coli heat-stable enterotoxin by indomethacin and chlorpromazine. Infect. Immun. 29:908–913, 1980.Google Scholar
  65. 65.
    Greenberg, R. N., Murad, F., and Guerrant, R. L. Lanthanum chloride inhibition of secretory response to Escherichia coli heat-stable enterotoxin Infect. Immun. 35:483–488, 1982.Google Scholar
  66. 66.
    Blacklow, N. R., Dolin, R., Fedson, D. S., DuPont, H., Northrup, R. S., Hornick, R. B., and Chanock, R. M. Acute infectious nonbacterial gastroenteritis: Etiology and pathogenesis. Ann. Intern. Med. 76:993–1008, 1972.Google Scholar
  67. 67.
    Meeroff, J. C., Schreiber, D. S., Trier, J. S., and Blacklow, N. R. Abnormal gastric motor function in viral gastroenteritis. Ann. Intern Med. 92:370–373, 1980.Google Scholar
  68. 68.
    Schreiber, D. S., Blacklow, N. R., and Trier, J. S. The mucosal lesion of the proximal small intestine in acute infectious nonbacterial gastroenteritis. N. Engl. J. Med. 288:1318–1323, 1973.CrossRefGoogle Scholar
  69. 69.
    Levy, A. G., Widerlite, L., Schwartz, C. J., Dolin, R., Blacklow, N. R., Gardner, J. D., Kimberg, D. V., and Trier, J. S. Jejunal adenylate cyclase activity in human subjects during viral gastroenteritis. Gastroenterology 70:321–325, 1976.Google Scholar
  70. 70.
    Kapikian, A. Z., Kim, H. W., Wyatt, R. G., Cline, W. L., Arrobio, J. O., Brandt, C. D., Rodriguez, W. J., Sack, D. A., Chanock, R. M., and Parrott, R. H. Human reovirus-like agent as the major pathogen associated with “winter” gastroenteritis in hospitalized infants and young children. N. Engl. J. Med. 294:965, 1976.CrossRefGoogle Scholar
  71. 71.
    Black, R. W., Merson, M. H., Huq, I., Alim, A. R. M. A., and Yunus, M. D. Incidence and severity of rotavirus and Escherichia coli diarrhea in rural Bangladesh: Implications for vaccine development, Lancet i:141–143, 1981.CrossRefGoogle Scholar
  72. 72.
    Wenman, W. M., Hinde, D., Feltham, S., and Gurwith, M. Rotavirus infection in adults: Results of a prospective family study. N. Engl. J. Med. 301:303–306, 1979.CrossRefGoogle Scholar
  73. 73.
    Tallett, S., MacKenzie, C., Middleton, P., Kerzner, B., and Hamilton, R. Clinical, laboratory, and epidemiological features of a viral gastroenteritis in infants and children. Pediatrics 60:217–222, 1977.Google Scholar
  74. 74.
    Sack, D. A., Chowdhury, A. M. A. K., Eusof, A., Ali, M. A., Merson, M. H., Islam, S., Black, R. E., and Brown, K. H. Oral hydration in rotavirus diarrhea: A double-blind comparison of sucrose with glucose electrolyte solution. Lancet ii:280–283, 1978.CrossRefGoogle Scholar
  75. 75.
    Torres-Pinedo, R., Lavastida, M., Rivera, C. L., Rodriguez, H., and Ortiz, A., Studies on infant diarrhea. I. A comparison of the effects of milk feeding and intravenous therapy upon the composition and volume of the stool and urine. J. Clin. Invest. 45:469–479, 1966.CrossRefGoogle Scholar
  76. 76.
    Middleton, P. J., Szymanski, M. T., Abbott, G. D., Bortolussi, R., and Hamilton, J. R. Orbivirus acute gastroenteritis of infancy. Lancet i:1241–1244, 1974.CrossRefGoogle Scholar
  77. 77.
    Davidson, G. P., Goller, I., Bishop, R. F., Townely, R. R. W., Holmes, P. H., and Ruck, B. J. Immunofluorescence in duodenal mucosa of children with acute enteritis due to a new virus. J. Clin. Pathol. 28:263–266, 1975.CrossRefGoogle Scholar
  78. 78.
    Davidson, G. P., and Barnes, G. L. Structural and functional abnormalities of the small intestine in infants and young children with rotavirus enteritis. Acta Paediatr. Scand. 68:181–186, 1979.CrossRefGoogle Scholar
  79. 79.
    Mebus, C. A., Wyatt, R. G., Sharpee, R. L., Sereno, M. M., Kalica, A. P., Zapikian, A. Z., and Twiehaus, M. J. Diarrhea in gnotobiotic calves caused by the reovirus-like agent of human infantile gastroenteritis. Infect. Immun. 14:471–474, 1976.Google Scholar
  80. 80.
    Holmes, I. H., Rodger, S. M., Schnagl, R. D., Ruck, B. J., Gust, I. D., Bishop, R. F., and Barnes, G. L. Is lactase the receptor and uncoating enzyme for infantile enteritis (ROTA) viruses? Lancet i:1387, 1976.CrossRefGoogle Scholar
  81. 81.
    Schoub, B. D., Jenkins, T., and Robins-Browne, R. M. Rotavirus infection in high-incidence lactase-deficiency population. Lancet i:328, 1978.CrossRefGoogle Scholar
  82. 82.
    Hamilton, J. R., Gall, D. G., Butler, D. G., and Middleton, P. J. Viral gastroenteritis: Recent progress, remaining problems. Ciba Founda. Symp. 42:209, 1976.Google Scholar
  83. 83.
    Kerzner, B., Kelly, M. H., Gall, D. G., Butler, D. G., and Hamilton, J. R. Transmissible gastroenteritis: Sodium transport and the intestinal epithelium during the course of viral enteritis. Gastroenterology 72:457–461, 1977.Google Scholar
  84. 84.
    Gall, D. G., Chapman, D., Kelly, M., and Hamilton, J. R. Na+ transport in jejunal crypt cells. Gastroenterology 72:452–456, 1977.Google Scholar
  85. 85.
    Shepherd, R. W., Butler, D. G., Cutz, E., Gall, D. G., and Hamilton, J. R. The mucosal lesion in viral enteritis: Extent and dynamics of the epithelial response to virus invasion in transmissible gastroenteritis of piglets. Gastroenterology 76:770–777, 1979.Google Scholar
  86. 86.
    Davidson, G. P., Gall, D. G., Petric, M., Butler, D. G., and Hamilton, J. R. Human rotavirus enteritis induced in conventional piglets: Intestinal structure and transport. J. Clin. Invest. 60:1402–1409, 1977.CrossRefGoogle Scholar
  87. 87.
    Kapikian, A. Z., Wyatt, R. G., Greenberg, H. B., Kalica, A. R., Wha, K. H., Brandt, C. D., Rodriguez, W. J., Parrott, R. H., and Chanock, R. M. Approaches to immunization of infants and young children against gastroenteritis due to rotaviruses. Rev. Infect. Dis. 2:459, 1980.CrossRefGoogle Scholar

Copyright information

© The United Nations University 1983

Authors and Affiliations

  • Richard L. Guerrant
    • 1
  1. 1.Division of Geographic MedicineUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations