Advertisement

The Multiconfiguration Hartree-Fock Method for Atomic Energy Levels and Transition Probabilities

  • C. F. Fischer
Conference paper

Abstract

The effect of correlation in the motion of electrons in a many electron system is an important factor in the theoretical determination of atomic properties. When Hartree1 derived his equations, he assumed the electrons moved in the field of the nucleus screened by the spherically averaged distribution of all the other electrons. Thus the effect of correlation in the motion of electrons was neglected. In fact, in his model there was a finite probability that two electrons might occupy the same region of space. Later Fock2 modified these equations. Starting with an antisymmetric total wavefunction and applying a variational procedure, he obtained what Hartree called the “equations with exchange” now referred to as the Hartree-Fock (HF) equations. Electrons with the same spin co-ordinates are repelled in this model but other correlation effects remain. For reasons such as these, Löwdin3 defined the error in the HF approximation as the correlation error.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Hartree, Proc. Camb. Phil. Soc. 24, 89, 111 (1927).Google Scholar
  2. 2.
    V. Fock, Z. Phys. 61, 126 (1930); 62, 795 (1930).ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    P. O. Löwdin, Adv. Chem. Phys. 2, 207 (1959).Google Scholar
  4. 4.
    F. Sasaki and M. Yoshimine Phys. Rev. A9, 17, 26 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    O. Sinanoglu, Proc. Roy. Soc. (London) A260, 379 (1961).ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    O. Sinanoglu, Adv. Atom. Molec. Phys. 14, 237 (1969).Google Scholar
  7. 7.
    A. W. Weiss, Adv. Atom. Molec. Phys. 9, 1 (1973).ADSCrossRefGoogle Scholar
  8. 8.
    H. P. Kelly, Adv. Chem. Phys. 14, 129 (1969).Google Scholar
  9. 9.
    M. Ya. Amusia, Proceedings of the IV International Conference on Vacuum Ultraviolet Radiation Physics (eds. E. E. Koch, R. Haensel, and C. Kunz, Pergamon Vieweg 205, (1974).Google Scholar
  10. 10.
    C. Froese Fischer, The Hartree-Fock Method for Atoms, (Wiley, New York, 1977).Google Scholar
  11. 11.
    M. Gavrila and J. E. Hansen, J. Phys. B: Atom. Molec. Phys. 11, 1353 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    M. Ya. Amusia, V. K. Ivanov, L. V. Chernysheva, Phys. Lett. 59A, 191 (1976).ADSCrossRefGoogle Scholar
  13. 13.
    O. Goscinski, B. T. Pickup, and G. Purvis, Chem. Phys. Lett. 22, 167 (1973).ADSCrossRefGoogle Scholar
  14. 14.
    M. Godefroid, J. J. Berger, and G. Verhaegen, J. Phys. B: Atom. Molec. Phys. 9, 2181 (1976).ADSCrossRefGoogle Scholar
  15. 15.
    C. Nicolaides and D. R. Beck, Chem. Phys. Lett. 36, 79 (1975).ADSCrossRefGoogle Scholar
  16. 16.
    E. A. Hylleraas and B. Undheim, Z. Phys. 65, 759 (1930);ADSCrossRefzbMATHGoogle Scholar
  17. 16a.
    J. K. L. MacDonald, Phys. Rev. 43, 830 (1933).ADSCrossRefGoogle Scholar
  18. 17.
    A. W. Weiss, Phys. Rev. A 9, 1524 (1974).ADSCrossRefGoogle Scholar
  19. 18.
    C. E. Moore, Atomic Energy Levels, NBS Circular 467, U. S. Government Printing Office, Washington, D. C., (1949).Google Scholar
  20. 19.
    C. Froese Fischer, J. Phys. B: Atom. Molec. Phys. 10, 1241 (1977).ADSCrossRefGoogle Scholar
  21. 20.
    D. Layzer, Z. Horak, M. N. Lewis, and D. P. Thompson, Ann. Phys. 29, 101 (1964).ADSCrossRefMathSciNetGoogle Scholar
  22. 21.
    C. Eckart, Phys. Rev. 36 , 828 (1930).ADSGoogle Scholar
  23. 22.
    A. P. Jucys, Int. J. Quantum Chem. 1, 311 (1967).ADSCrossRefGoogle Scholar
  24. 23.
    A. P. Jucys, E. P. Nasšlėnas and P. S. Žvirblis, Int. J. Quantum Chem. 6, 465 (1972).CrossRefGoogle Scholar
  25. 24.
    C. Froese Fischer, J. E. Hansen, and M. Barwell, J. Phys. B: Atom. Molec. Phys. 9, 1841 (1976).ADSCrossRefGoogle Scholar
  26. 25.
    T. M. Bieniewski, Astrophys. J. 208, 228 (1976).ADSCrossRefGoogle Scholar
  27. 26.
    A. Hibbert, Phys. Scripta 16, 7 (1977).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. 27.
    C. Froese Fischer, J. Quant. Spectrosc. Radiat. Transfer 13, 201 (1973).ADSCrossRefGoogle Scholar
  29. 28.
    A. W. Weiss, Beam-Foil Spectroscopy 1 (ed. I. A. Sellin and D. J. Pegg, Plenum, New York, (1976) p. 51.CrossRefGoogle Scholar
  30. 29.
    C. Froese Fischer, Can. J. Phys. (1978) to appear.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • C. F. Fischer
    • 1
  1. 1.Department of Computer ScienceThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations