Advertisement

Theoretical Model for the Phospholipid Bilayer System: Single Component Phase Transition and Binary Mixture Phase Diagram

  • R. G. Priest
  • J. P. Sheridan
Chapter

Abstract

An interesting and important problem in statistical mechanics is the phospholipid main phase transition and related phenomena. A phospholipid molecule may be thought of as being composed of a polar head group molecular subunit to which are attached two alkyl chain “tails.”1 In aqueous solution, under conditions of excess water, these molecules are organized into bilayer structures. The bilayer may be viewed as a planar assembly with thickness approximately twice the length of the chain tails (~ 60 Å). The polar head groups are confined to the two planes which define the surface of the bilayer and are in contact with the water on the outside of the bilayer. The hydrophobic alkyl chains are confined to the interior of the bilayer and extend from the polar head group to which they are attached to the plane which is the mid plane of the bilayer. Water is almost totally excluded from the interior of the bilayer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A description of phospholipid bilayers and their properties may be found in D. Chapman, R. M. Williams and D. L. Ladbrooke, Chem. Phys. Lipids 1, 445 (67); D. Chapman Biological Membranes, Vol. 1, D. Chapman editor, (Academic Press, New York, 1968 ).CrossRefGoogle Scholar
  2. 2.
    M. C. Phillips, D. E. Graham, H. Hauser, Nature 254, 154 (75).Google Scholar
  3. 3.
    E. Shimshick and H. M. McConnell, Biochemistry 12, 2351 (73).Google Scholar
  4. 4.
    P. B. Hitchcock, R. Mason, K. M. Thomas and G. G. Shipley, Proc. Nat. Acad. Sci (USA) 71, 3036 (74).Google Scholar
  5. 5.
    P. Bothorel, J. Belle, B. Lemaire, Chemistry and Physics of Lipids 12, 96 (74).Google Scholar
  6. 6.
    J. F. Nagle, J. Chem. Physics 58, 252 (72); 63, 1255 (75).Google Scholar
  7. 7.
    S. Marcelja, Biochim. Biophys. Acta 367, 165 (74).Google Scholar
  8. 8.
    H. L. Scott, J. Theor. Biol. 46, 241 (74); J. Chem. Physics 62, 1347 (75).Google Scholar
  9. 9.
    S. White, Biophysical Journal 15, 95 (75).Google Scholar
  10. 10.
    J. A. McCammon and J. M. Deutch, J. Amer. Chem. Soc. 97, 6675 (75).Google Scholar
  11. 11.
    M. B. Jackson, Biochemistry 15, 2555 (76).Google Scholar
  12. 12.
    R. G. Priest, J. Chem. Physics 66, 722 (77).Google Scholar
  13. 13.
    R. E. Jacobs, B. Hudson, H. C. Andersen, Proc. Natl. Acad. Sci. USA 72, 3993 (75).Google Scholar
  14. 14.
    F. W. Wiegel, Physics Letters 57A, 393 (76); J. Stat. Phys. 13, 515 (75).Google Scholar
  15. 15.
    P. deGennes, Phys. Lett. A47, 123 (74).Google Scholar
  16. 16.
    H. Trauble, Biomembranes, F. Kreuzer and J.F.G. Siegers, editors (Plenum, New York, 1972 ) Vol. 3, p. 197.Google Scholar
  17. 17.
    P. J. Flory, Statistical Mechanics of Chain Molecules, ( Interscience, New York, 1969 ).Google Scholar
  18. 18.
    S. Mabrey and J. M. Sturtevant, Proc. Natl. Acad. Sci. USA 73, 3862 (76).Google Scholar
  19. 19.
    B. D. Ladbrooke and D. Chapman, Chem. Phys. Lipids 3, 304 (69).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • R. G. Priest
    • 1
  • J. P. Sheridan
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations