Advertisement

The Self Control of Lipid Bilayers

  • Donald L. Melchior
  • Joseph M. Steim
Chapter

Abstract

A characteristic of nearly all organisms is their ability to accomodate the fatty acid composition of their lipids to growth temperature (7,8,10,23). The principal biochemical adjustment is an increase in the fraction of low-melting-point fatty acids (usually unsaturates) in lipids synthesized at lower growth temperatures. The obvious physical result of this adjustment is a depression of lipid melting points. Physiologically, the alteration of fatty acid composition tends to maintain constant bilayer fluidity at various growth temperatures (27). Maintainence of membrane fluidity becomes especially important in organisms such as Ackoleplasma laidlawii (15,29) and Escherichia coli (16,21,30), whose membranes can undergo a transition at or just below growth temperature. In such cases, the shift in the fatty acid spectrum at lower growth temperatures is absolutely essential to maintain a functional fluid state. As membranes pass through a transition from high to low temperature they become progressively more crystalline. The increased order can give rise to aberrant behavior, including changes in enzyme kinetics, cell leakage, cessation of cell division, and even cell lysis (16,19,21).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, C. M. and Rose, A. H., J. Bacteriol. 99, 371 (1969).Google Scholar
  2. 2.
    Cronan, J. E., J. Biol. Chem. 250, 7054 (1975).Google Scholar
  3. 3.
    Fox, C. F., Law, J. H., Tsulsogashi, N., and Wilson, G., Proc. Natl. Acad. Sci. U. S. A. 67, 598 (1970).CrossRefGoogle Scholar
  4. 4.
    Fulco, A. J., Blochim. Biophys. Acta 218, 558 (1970).Google Scholar
  5. 5.
    Fulco, A. J., Ann. Rev. Biockem. 43, 215 (1973).CrossRefGoogle Scholar
  6. 6.
    Hildebrand, J. G. and Law, J. H., Biochemistry 3, 1304 (1969).CrossRefGoogle Scholar
  7. 7.
    Irving, L., Schmidt-Nielson, K. and Abrahamsen, N. S. B., Physiol. Zool. 30, 93 (1956).Google Scholar
  8. 8.
    Johnston, P. V. and Roots, B. I., Comp. Biochem. Physiol. 77, 303 (1964).Google Scholar
  9. 9.
    Kasai, R., Kitazima, Y., Martin, C. E., Nozawa, Y., Skviver, L. and Thompson, G. A., Jr., Biochemistry 15, 5228 (1976).CrossRefGoogle Scholar
  10. 10.
    Marr, A. G. and Ingraham, J. L., J. Bacteriol. 84, 1260 (1962).Google Scholar
  11. 11.
    Martin, C. E., Hiramitsu, K., Kitazima, Y., Nozawa, Y., Skviver, L., and Thompson, G. A., Jr., Biochemistry 15, 5218 (1976).CrossRefGoogle Scholar
  12. 12.
    McElhaney, R. and Tourtellotte, M. E., Science 164, 433 (1969).CrossRefGoogle Scholar
  13. 13.
    McElhaney, R. N. and Tourtellotte, M. E., Biochim. Biophys. Acta 202, 120 (1970).Google Scholar
  14. 14.
    McElhaney, R. N., J. Mol. Biol. 84, 145 (1974).CrossRefGoogle Scholar
  15. 15.
    Melchior D. L., Morowitz, H. J., Sturtevant, J. M., and Tsong, T-Y., Biochim. Biophys. Acta 210, 114 (1970).Google Scholar
  16. 16.
    Melchior, D. L., and Steim, J. M., Ann. Rev. Biophys. Bioeng. 5, 205 (1976).CrossRefGoogle Scholar
  17. 17.
    Melchior, D. L., Scavitto, F. J., Walsh, M. T., and Steim, J. M., Thermochim. Acta 18, 43 (1977).Google Scholar
  18. 18.
    Melchior, D. L. and Steim, J. M., Biockim. Biophys Acta 466, 148 (1977).CrossRefGoogle Scholar
  19. 19.
    Melchior, D. L. and Steim, J. M. In “Prog. Surf. Memb. Sci.” (D. A. Cadenhead and J. F. Danielli eds.) Vol. 13, Academic Press, New York (1977).Google Scholar
  20. 20.
    Okuyama, H., Yamada, K., Ikezawa and Wakil, S. J., J. Biol. Chem. 257, 2487 (1976).Google Scholar
  21. 21.
    Overath, P. and Thilo, L., MPT international Review of Science: Biochemistry Series 2, in press.Google Scholar
  22. 22.
    Razin, S. In “Prog. Surf. Memb. Sci.” (D. A. Cadenhead, J. F. Danielli, and M. D. Rosenberg eds.) Vol. 9, Academic Press New York, 257 (1975).Google Scholar
  23. 23.
    Rose, A. H., ed. “Thermobiology”, Academic Press, New York (1967).Google Scholar
  24. 24.
    Schairer, H. V. and Overath, P., J. Mol. Biol. 44, 209 (1969).CrossRefGoogle Scholar
  25. 25.
    Shimshick, E. J. and McConnell, H. M., Biochemistry 12, 2351 (1973).CrossRefGoogle Scholar
  26. 26.
    Sinensky, M.,, J. Bacteriol. 106, 449 (1971).Google Scholar
  27. 27.
    Sinensky, M., Proc. Natl. Acad. Sci. U. S. A. 71, 522 (1974).CrossRefGoogle Scholar
  28. 28.
    Singleton, W. S. In “Fatty Acids, Part I” (K. S. Markley, ed.) Second Edition, 609, Interscience Publishers, Inc. New York (1960).Google Scholar
  29. 29.
    Steim, J. M., Tourtellotte, M. E., Reinert, J. C., McElhaney, R. N., and Rader, R. L., Proc. Natl. Acad. Sci. U. S. A. 63, 103, (1969).CrossRefGoogle Scholar
  30. 30.
    Steim, J. M. In “Mitochondria/Biomembranes: ( S. A. Van Den Berg, P. Borst, L. L. M. Van Deenen, J. C. Riemersma, E. C. Slater, and J. M. Taeger, eds.) 185, North-Holland, Amsterdam (1972).Google Scholar
  31. 31.
    Steim, J. M. In “Methods in Enzymology” (S. Fleischer and L. Packer, eds.) Vol. XXIIB, 262, Academic Press, New York (1974).Google Scholar
  32. 32.
    Sumper, M. and Traiible, H. FEBS letters 30, 469 (1973).CrossRefGoogle Scholar
  33. 33.
    Sumper, M., Eur. J. Biochem. 49, 469 (1974).CrossRefGoogle Scholar
  34. 34.
    Tourtellotte, M. E. In “Membrane Molecular Biology” ( C. F. Fox and A. O. Keith, eds.) 439, Sinaven Associates, Stamford, CT (1972).Google Scholar
  35. 35.
    Wakil, S. J., ed. “Lipid Metabolism”, Academic Press, New York (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Donald L. Melchior
    • 1
  • Joseph M. Steim
    • 1
  1. 1.Department of ChemistryBrown UniversityProvidenceUSA

Personalised recommendations