Advertisement

A Bibliographical Guide to Self-Similar Processes and Long-Range Dependence

  • Murad S. Taqqu
Part of the Progress in Probability and Statistics book series (PRPR, volume 11)

Abstract

Self-similar processes are of interest in probability, statistics, physics, turbulence and in modelling random phenomena with long-range dependence. Since the applications are diverse, references are scattered in the literature. The purpose of this bibliographical guide is to bring together many of the important references to the subject. Relevant references to some related topics are also included. Although this is definitely not a comprehensive bibliography, we hope that it can be a useful tool for researchers in this fast moving area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adler, R.J. (1981). The Geometry of Random Fields. Chichester: Wiley.zbMATHGoogle Scholar
  2. [2a]
    Astrauskas, A. (1982). Stable self-similar fields. Lithuanian Mat. Journal 22 (3), 215–221.zbMATHMathSciNetGoogle Scholar
  3. [2b]
    Astraukas, A. (1983). Limit theorems for sums of linearly generated random variables. Lithuanian Mat. Journal 23 (2), 127–134.Google Scholar
  4. [2c]
    Astraukas, A. (1983). Limit theorems for quadratic forms of linear processes. Lithuanian Mat. Journal 23 (4), 355–361.Google Scholar
  5. [3]
    Avram, F. and Taqqu, M.S. (1984). Symmetric polynomials of random variables attracted to an infinitely divisible law. School of Operations Research and Industrial Engineering Technical Report No. 622, Cornell University. To appear in Z. Wahrscheinlichkeitstheorie verw. Geb..Google Scholar
  6. [4]
    Avram, F. and Taqqu, M.S. (1984). Generalized powers of strongly dependent random variables. School of Operations Research and Industrial Engineering Technical Report, No. 643, Cornell University.Google Scholar
  7. [4a]
    Avram, F. and Taqqu, M.S. (1985). Weak convergence of moving averages with infinite variance. Appears in this volume.Google Scholar
  8. [5]
    Bentkus, V. and Surgailis, D. (1981). On some classes of self-similar random fields. Lithuanian Mat. Journal 21 (2), 53–66.zbMATHMathSciNetGoogle Scholar
  9. [6]
    Beran. J. and Künsch, H. (1985). Location estimators for processes with long-range dependence. Preprint.Google Scholar
  10. [7]
    Berman, S.M. (1978). A new kind of tightness of probability measures and its applications to integral functionals of stochastic processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 42, 155–162.zbMATHGoogle Scholar
  11. [8]
    Berman, S.M. (1979). High level sojourns for strongly dependent Gaussian processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 50, 223–236.zbMATHGoogle Scholar
  12. [9]
    Berman, S.M. (1984). Sojourns of vector Gaussian processes inside and outside spheres. Z. Wahrscheinlichkeitstheorie verw. Geb. 66, 529–542.zbMATHGoogle Scholar
  13. [10]
    Bhattacharya, R.N., Gupta, V.K. and Waymire, E. (1982). The Hurst effect under trends. Preprint. To appear in the Journal of Applied Probability.Google Scholar
  14. [11a]
    Bleher, P.M. (1980). (-expansion for automodel random fields. In: Multi-components Random Systems. pp. 59–117. Advances in Prob. and Related Topics 6, New York: Dekker.Google Scholar
  15. [12]
    Bleher, P.M. and Sinai, Ja.G. (1973). Investigation of the critical point in models of the type of Dyson’s Hierarchical Model. Commun. Math. Phys. 33, 23–42.MathSciNetGoogle Scholar
  16. [13]
    Borell, C. (1984). On polynomial chaos and integrability. Prob. and Math. Stat. 3, 191–203.MathSciNetGoogle Scholar
  17. [14]
    Bradley, R.C. (1985). Basic properties of strong mixing conditions. Appears in this volume.Google Scholar
  18. [14a]
    Bradley, R.C., Bryc, W., and Janson, S. (1985). Remarks on the foundations of measures of dependence. Tech. Report 105, Center for Stoch. Processes, Univ. of North Carolina.Google Scholar
  19. [15]
    Breuer, P. and Major, P. (1983). Central limit theorems for non-linear functionals of Gaussian fields. Journal of Multivariate Analysis 13, 425–441.zbMATHMathSciNetGoogle Scholar
  20. [16]
    Burton, R.M. and Waymire, E. (1984). Scaling limits for point random fields. Journal of Multivariate Analysis, 15, 237–251.zbMATHMathSciNetGoogle Scholar
  21. [17]
    Cambanis, S. (1982). Complex symmetric stable variables and processes. Center for Stoch. Processes, University of North Carolina, Tech. Report 10.Google Scholar
  22. [18]
    Cambanis, S. and Miller, G. (1980). Some path properties of p-th order and symmetric stable processes. Ann. Prob. 6, 1148–1156.MathSciNetGoogle Scholar
  23. [19]
    Cambanis, S. and Miller, G. (1981). Linear problems in pth order and stable processes. SIAM J. Appl. Math. 41, 43–69.zbMATHMathSciNetGoogle Scholar
  24. [20]
    Cambanis, S. and Soltani, A.R. (1984). Prediction of stable processes: Spectral and moving average representation. Z. Wahrscheinlichkeitstheorie verw. Geb. 66, 593–612.zbMATHMathSciNetGoogle Scholar
  25. [21]
    Cambanis, S., Rosinski, J. and Woyczynski, W.A. (1985). Convergence of quadratic forms in p-stable random variables and Op-radonifying operators. Ann. Prob. 13, 885–897.zbMATHMathSciNetGoogle Scholar
  26. [21a]
    Cambanis, S., Hardin, C.D. and Weron, A. (1985). Innovations and Wold decompositions of stable sequences. Tech. Report 106, Center for Stoch. Processes, Univ. of North Carolina.Google Scholar
  27. [21b]
    Cambanis. S.. and Miamee, J.C. (1985). On prediction of harmonizable s’-able processes. Tech. Report 110, Center for Stoch. Processes, Univ. of North Carolina.Google Scholar
  28. [22]
    Carmona, R. and Kôno, N. (1976). Convergence en loi et lois du logarithme itéré pour les vecteurs gaussiens. Z. Wahrscheinlichkeitstheorie und Verw. Geb. 36, 241–267.zbMATHGoogle Scholar
  29. Cassandro, M. and Jona-Lasinio, G. (1978). Critical point behavior and probability theory. Adv. in Physics 27, 913–941.Google Scholar
  30. [24]
    Chambers, D. and Slud, E. (1985). Central limit theorems for nonlinear functionals of stationary Gaussian processes. Preprint.Google Scholar
  31. [24a]
    Chentsov, N.N. (1957). Lévy’s Brownian motion for several parameters and generalized white noise. Th. Prob. Appl. 2, 265–266.Google Scholar
  32. [25]
    Cline, D.B.H. (1985). Convolution tails, product tails and on domains of attraction. Preprint.Google Scholar
  33. [26]
    Cline, D.B.H. and Brockwell, P.J. (1985). Linear prediction of ARMA processes with infinite variance. Stoch. Proc.Appl. 19, 281–296.zbMATHMathSciNetGoogle Scholar
  34. [27]
    Chi, M., Neal, E., and Young, G.K. (1973). Practical application of fractional Brownian motion and noise to synthetic hydrology. Water Resour. Res. 9, 1523–1533.Google Scholar
  35. [28]
    Collet, P. and Eckmann, J.P. (1978). A renormalization group analysis of the hierarchical model in statistical mechanics. Lecture Notes in Physics 74. New York: Springer Verlag.Google Scholar
  36. [29]
    Cox, D.R. (1981). Statistical analysis of time series: some recent developments. Scand. J. Statist. 8, 93–115.zbMATHMathSciNetGoogle Scholar
  37. [30]
    Cox, D.R. (1984). Long-range dependence: a review. Statistics: An Appraisal: H.A. David and H.T. David, eds., pp. 55–74. Iowa State Univ. Press.Google Scholar
  38. [31]
    Davis, R. and Resnick. S. (1985). Limit theory for moving averages with regularly varying tail probabilities. Ann. Prob. 13, 179–195.zbMATHGoogle Scholar
  39. [32]
    Davis, R. and Resnick, S. (1985). Limit theory for the sample correlation function of moving averages. Appears in this volume.Google Scholar
  40. [33]
    Dawson, D.A. and Salehi, H. (1980). Spatially homogeneous random evolutions. J. Multivariate Anal. 10, 141–180.zbMATHMathSciNetGoogle Scholar
  41. [34]
    Dehling, H., Denker, M. and Philipp, W. (1984). Invariance principles for von Mises and U-statistics. Z. Wahrscheinlichkeitstheorie verw. Geb. 67, 139–167.zbMATHMathSciNetGoogle Scholar
  42. [35]
    Dehling, H. (1985). The functional law of the iterated logarithm for von-Mises functionals and multiple Wiener integrals. Preprint.Google Scholar
  43. [36]
    Dehling, H. (1985). Almost sure approximations for U-statistics. Appears in this volume.Google Scholar
  44. [37]
    Dempster, A.P. (1979). A modelling/Bayesian approach to seasonal economic time series analysis. Abstract.Google Scholar
  45. [37a]
    Denker, M. (1985). Asymptotic distribution theory in nonparametric statistics. Braunschweig/Wiesbaden: Fiedr. Vieweg and Sohn.zbMATHGoogle Scholar
  46. [38]
    Dobrushin, R.L. (1979). Gaussian and their subordinated self similar random generalized fields. Ann. Probability 7, 1–28.zbMATHMathSciNetGoogle Scholar
  47. [39]
    Dobrushin, R.L. (1980). Automodel generalized random fields and their renormalization group. In Multicomponent Random Systems, p. 153–198. Advances in Prob. and Related Topics 6, New York: Dekker.Google Scholar
  48. [40]
    Dobrushin, R.L. and Major, P. (1979). Limit behavior of some self-similar fields. Preprint.Google Scholar
  49. [41]
    Dobrushin, R.L. and Major, P. (1979). Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheorie verw. Geb. 50, 27–52.zbMATHMathSciNetGoogle Scholar
  50. [42]
    Dobrushin, R.L. and Takahashi, Y. (1979). Gaussian random fields with scale limits. Preprint.Google Scholar
  51. [43]
    Dürr, D., Goldstein, S. and Lebowitz, J.L. (1983). Stochastic processes originating in deterministic microscopic dynamics. J. Stat. Physics 30, 519–526.Google Scholar
  52. [44]
    Dürr, D., Goldstein, S. and Lebowitz, J.L. (1985). Asymptotics of particle trajectories in infinite one-dimensional systems with collisions. Preprint.Google Scholar
  53. [45]
    Dynkin, E.B. and Mandelbaum, A. (1983). Symmetric statistics, Poisson point processes and multiple Wiener integrals. Ann. Stat. 11, 739–745.zbMATHMathSciNetGoogle Scholar
  54. [46]
    Dyson, F.J. (1971). An Ising ferromagnet with discontinuous long-range order. Commun. Math. Physics 21, 269–283.MathSciNetGoogle Scholar
  55. [47]
    Eberhard, J.W. and Horn, P.M. (1978). Excess 1/f noise in metals. Phys. Rev. B 18, 6681–6693.Google Scholar
  56. [48]
    Engel, D.D. (1982). The multiple stochastic integral. Memoirs Am. Math., Soc. 38, 265.MathSciNetGoogle Scholar
  57. [49]
    Enss, V. (1978). Renormalization group limits for Wick polynomials of Gaussian processes. Reports on Math. Phys. 13, 87–99.zbMATHGoogle Scholar
  58. [50]
    Enss, V. (1980). Scaling limits of generalized random processes. In Quantum Fields-Algebras, Processes, L. Streit ed., Proceedings of the Symposium “Bielefeld Encounters in Physics and Mathematics II, 1978, pp. 107–124. Wien: Springer-Verlag.Google Scholar
  59. [50a]
    Fortus, M.I. (1983). Canonical correlations and canonical functionals for a stationary random process with a power spectral density. Soviet Math. Doklady 28 (1), 280–283.Google Scholar
  60. [51]
    Fox, R. (1981). Upper functional laws of the iterated logarithm for non-Gaussian self-similar processes. Technical Report No. 509, School of Operations Research and Industrial Engineering, Cornell University.Google Scholar
  61. [52]
    Fox, R. and Taqqu, M.S. (1983). Central limit theorems for quadratic forms in random variables having long-range dependence. School of Operations Research and Industrial Engineering Technical Report No. 590, Cornell University.Google Scholar
  62. [53]
    Fox, R. and Taqqu, M.S. (1984). Multiple stochastic integrals with dependent integrators. School of Operations Research and Industrial Engineering Technical Report No. 599, Cornell University. To appear in the Journal of Multivariate Analysis.Google Scholar
  63. [54]
    Fox, R. and Taqqu, M.S. (1984). Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. (Old title: Maximum likelihood type estimator for the self-similarity parameter in Gaussian sequences.) School of Operations Research and Industrial Engineering Technical Report No. 592, Cornell University. To appear in Annals of Statistics.Google Scholar
  64. [55]
    Fox, R. and Taqqu, M.S. (1985). Non-central limit theorems for quadratic forms in random variables having long-range dependence. Annals of Probability 13, 428–446.zbMATHMathSciNetGoogle Scholar
  65. [56]
    Frisch, U., Sulem, P.L. and Nelkin, M. (1978). A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87, 719–736.zbMATHGoogle Scholar
  66. [57]
    Frölich, J. (1983). Editor. Scaling and Self-similarity in Physics: Renormalization in Statistical Mechanics and Dynamics. Progress in Physics, Vol. 7. Boston: Birkhaüser.Google Scholar
  67. [58]
    Geweke. J. and Porter-Hudak, S. (1984). The estimation and application of long memory time series models. J. Time Series Anal. 4, 221–238.Google Scholar
  68. [59]
    Giraitis, L. (1983). On the convergence of some non-linear transformation of Gaussian sequences to self-similar processes. Lithuanian Mat. Journal 23 (1), 31–39.zbMATHMathSciNetGoogle Scholar
  69. [59b]
    Giraitis, L. (1984). Asymptotic distribution of spectral estimates of Ito-Wiener integrals. Lithuanian Mat. Journal 24 (3), 98–104.Google Scholar
  70. [60]
    Giraitis, L. and Surgailis, D. (1984). A limit theorem for triangular array of symmetric statistics. Preprint.Google Scholar
  71. [61]
    Giraitis, L. and Surgailis, D. (1985). Central limit theorem and other limit theorems for functionals of Gaussian processes. Preprint.Google Scholar
  72. [61b]
    Giraitis, L., and Surgailis, D. (1985). Multivariate Appell polynomials and the central limit theorem. Appears in this volume.Google Scholar
  73. [62]
    Gisselquist, R. (1973). A continuum of collision process limit theorems. Ann. of Prob. 1, 231–239.zbMATHMathSciNetGoogle Scholar
  74. [63]
    Goldman, A. (1984). Estimations analytiques concernant the movement brownian fractionnaire à plusieurs parametres. C.R. Acad. Sci. Paris, 298, Serie I, No. 5, 91–93.Google Scholar
  75. [64]
    Goldman, A. (1984). Decomposition de McKean, prediction et exacte mesure de Hausdorff des trajectoires du mouvement brownien à plusieurs parametres. Preprint. Submitted Annals Prob.Google Scholar
  76. [65]
    Gomide, F.L.S. (1978). Markovian inputs and the Hurst phenomenon. J. Hydrology 37, 23–45.Google Scholar
  77. [66]
    Graf, H.P. (1983). Long-range correlations and estimation of the self-similarity parameter. Thesis, ETH, Zürich.Google Scholar
  78. [67]
    Granger, C.W.J. (1980). Long memory relationships and aggregation of dynamic models. J. Econometrics 14, 227–238.zbMATHMathSciNetGoogle Scholar
  79. [68]
    Granger, C.W.J. and Joyeux, R. (1980). An introduction to long-memory time series and fractional differencing. J. Time Series Anal. 1, 15–30.zbMATHMathSciNetGoogle Scholar
  80. [69]
    Greene, M.T. and Fielitz, B.D. (1977). Long-term dependence in common stock returns. J. Financial Economics 4, 339–349.Google Scholar
  81. [70]
    Greene, M.T. and Fielitz, B.D. (1979). The effect of long-term dependence on risk return models of common stocks. Operations Research 27, 944–951.zbMATHMathSciNetGoogle Scholar
  82. [71]
    Greenwood, P.E. (1969). The variation of a stable path is stable. Z. Wahrscheinlichkeitstheorie verw. Geb. 14, 140–148.zbMATHMathSciNetGoogle Scholar
  83. [72]
    Grize, Y.L. (1984). Towards a stationary continuous lower probability based model for flicker noise. Thesis, Cornell University.Google Scholar
  84. [73]
    Hampel, F.R. (1978). Modern trends in the theory of robustness. Math. Operationsforsch. Statist. Scr. Statist. 9, 425–442.zbMATHMathSciNetGoogle Scholar
  85. [74]
    Hardin Jr., C.D. (1981). Isometries on subspaces of LP. Indiana Univ. Math. J. 30, 449–465.zbMATHMathSciNetGoogle Scholar
  86. [75]
    Hardin Jr., C.D. (1982). On the spectral representation of symmetric stable processes. J. Mult. Anal. 12, 385–401.zbMATHMathSciNetGoogle Scholar
  87. [76]
    Harris, T.E. (1965). Diffusion with “collisions” between particles. J. Appl. Probability 2, 323–338.MathSciNetGoogle Scholar
  88. [77]
    Helland, K.N. and Van Atta, C.W. (1978). The “Hurst phenomenon” in grid turbulence. J. Fluid Mech. 85, part 3, 573–589.Google Scholar
  89. [77a]
    Hida, T. (1970). Stationary Stochastic Processes. Princeton: Princeton Univ. Press.zbMATHGoogle Scholar
  90. [77b]
    Hida, T. (1980). Brownian Motion. New York: Springer Verlag.zbMATHGoogle Scholar
  91. [78]
    Hipel, K.W. and McLeod, A.I. (1978). Box-Jenkins modelling in the geophysical sciences. Preprint. Dept. of Systems Design, University of Waterloo, Ontario. To appear in Future Trends in Geomathematics.Google Scholar
  92. [79]
    Hipel, K.W. and McLeod, A.I. (1979). Perspectives in stochastic hydrology. Time Series Proceedings, International Meeting, Nottingham University, pp. 73–102, Amsterdam: North-Holland.Google Scholar
  93. [80]
    Ho, H.-C. (1984). Limit theorems for non-linear functions of a stationary Gaussian process. Thesis, Wayne State University.Google Scholar
  94. [81]
    Ho, H.C. and Sun, T.C. (1984). A central limit theorem for non-instantaneous filters of a stationary Gaussian process. Preprint.Google Scholar
  95. [82]
    Ho, H.C. and Sun, T.C. (1984). Limit theorems for non-linear functionals of a stationary Gaussian process. Preprint.Google Scholar
  96. [83]
    Hoskings, J.R.M. (1981). Fractional differencing. Biometrika, 68, 1, 165176.Google Scholar
  97. [84]
    Hoskings, J.R.M. (1982). Some models in persistence in time series. In: Time Series Analysis: Theory and Practice 1, 641–653. Amsterdam: North-Holland.Google Scholar
  98. [85]
    Hoskings, J.R.M. (1982). Modelling persistence in hydrological time series using fractional differencing. Preprint.Google Scholar
  99. [86]
    Hsiao, C.T. (1981). Central limit theorem for stationary and dependent random vectors. Preprint.Google Scholar
  100. [87]
    Hughes, B.D., Shlesinger, M.F. and Montroll, E.W. (1981). Random walks with self-similar clusters. Proc. Nat. Acad. Sci. USA 78, 3287–3291.zbMATHMathSciNetGoogle Scholar
  101. [88]
    Hunt, G.A. (1951). Random Fourier transforms. Trans. Amer. Math. Soc. 71, 38–69.zbMATHMathSciNetGoogle Scholar
  102. [89]
    Hurst, H.E. (1951). Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civil Engineers 116, 770–808.Google Scholar
  103. [90]
    Hurst, H.E. (1955). Methods of using long-term storage in reservoirs. Proceedings of the Institution of Civil Engineers, Part I, 519–577.Google Scholar
  104. [91]
    Hurst, H.E., Black, R.P. and Simaika, Y.M. (1965). Long-term Storage: An Experimental Study. London: Constable.Google Scholar
  105. [92]
    Ibragimov, I.A. and Linnik, Yu.V. (1971). Independent and stationary sequences of random variables. Groningen: Walters-Noordhoff.zbMATHGoogle Scholar
  106. [93]
    Isobe, E. and Sato, S. (1983). Wiener-Hermite expansion of a process generated by an Itô stochastic differential equation. J. Appl. Prob. 20, 754–765.zbMATHMathSciNetGoogle Scholar
  107. [94]
    Itô, K. (1951). Multiple Wiener Integral. J. Math. Soc. Japan 3, 157–169.zbMATHMathSciNetGoogle Scholar
  108. [95]
    Itô, K. (1956). Spectral type of the shift transformation of differential processes with stationary increments. Trans. Amer. Math. Soc. 81, 106–134.MathSciNetGoogle Scholar
  109. [96]
    Johnston, S. (1981). Fractalfest: some prickly problems in plasma physics. Preprint.Google Scholar
  110. [97]
    Jona-Lasinio, G. (1977). Probabilistic approach to critical phenomena. In: New Developments in Quantum Field Theory and Statistical Mechanics, Cargese 1976 (ed: M. Levy and P. Mitter ), pp. 419–446. New York: Plenum.Google Scholar
  111. [98]
    Jonas, A.B. (1983). Persistent memory random processes. Thesis, Harvard University.Google Scholar
  112. [98a]
    Kahane, J.P. (1985). Some random series of functions Cambridge: Cambridge Univ. Press.Google Scholar
  113. [99]
    Kallianpur, G. (1980). Stochastic filtering theory. New York: Springer Verlag.zbMATHGoogle Scholar
  114. [100]
    Karlin, S. and Rinott, Y. (1982). Applications of ANOVA type decompositions for comparisons of conditional variance statistics including Jackknife estimates. Annals of Stat. 10, 485–501.zbMATHMathSciNetGoogle Scholar
  115. [101]
    Kasahara, Y. and Maejima, M. (1985). Functional limit theorems for weighted sums of i.i.d. random variables. Preprint.Google Scholar
  116. [102]
    Kesten, H. and Spitzer, F. (1979). A limit theorem related to a new class of self-similar processes. Z. Wahrscheinlichkeitstheorie and Verw. Geb. 50, 5–25.zbMATHMathSciNetGoogle Scholar
  117. [103]
    Kipnis, C., Lebowitz, J.L., Presutti, E. and Spohn, H. (1983). Self-diffusion for particles with stochastic collisions in one dimension. J. Stat. Physics 30, 107–121.MathSciNetGoogle Scholar
  118. [104]
    Kolmogorov, A.N. (1940). Wienersche Spiralen and einige andere interessante Kurven in Hilbertschen Raum. C.R. (Doklady) Acad. Sci. USRR (N.S.) 26, 115–118.Google Scholar
  119. [105]
    Kolmogorov, A.N. (1941). Local structure of turbulence in an incompressible liquid for very large Reynolds numbers. C.R. (Doklady) Acad. Sci. URSS (N.S.) 30, 299–303. Reprinted in Friedlander and Topper 1961, 151–155.Google Scholar
  120. [106]
    Kôno, N. (1983). Classical limit theorems for dependent random variables having moment conditions. Fourth USSR-Japan Symp. on Prob. and Math. Stat. at Tbilisi. Lecture Notes in Math. 1021. New York: Springer-Verlag.Google Scholar
  121. [107]
    Kôno, N. (1983). Approximate upper functions of Gaussian processes. J. Math. Kyoto Univ. 23, 195–209.zbMATHMathSciNetGoogle Scholar
  122. [108]
    Kôno, N. (1983). Iterated log type strong limit theorems for self-similar processes. Proc. Japan Acad., Ser.A, 59, 85–87.zbMATHGoogle Scholar
  123. [109]
    Kôno, N. (1983). Propriétés quasi-partout de fonctions aléatoires gaussiennes. Preprint. IRMA, Math., Univ. Louis Pasteur, True R. Descartes, 67084 Strasbourg, France.Google Scholar
  124. [110]
    Kôno, N. (1985). Hausdorff dimension of sample paths for self-similar processes. Appears in this volume.Google Scholar
  125. [111]
    Krakowiak, W. and Szulga, J. (1984). Random multilinear forms. Preprint.Google Scholar
  126. [112]
    Künsch, H. (1981). Thermodynamics and statistical analysis of Gaussian random fields. Z. Wahrscheinlichkeitstheorie verw. Geb. 58, 407–421.zbMATHGoogle Scholar
  127. [113]
    Künsch, H. (1985). Discrimination between small trends and long-range dependence. Preprint.Google Scholar
  128. [114]
    Kwapien, S. and Woyczynski, W.A. (1985). Decoupling of martingale transforms and stochastic integrals for processes with independent increments. Preprint.Google Scholar
  129. [115]
    Laha, R.G. and Rohatgi, V.K. (1982). Operator self-similar stochastic processes in Rd. Stoch. Proc. Appl., 12, 73–84.MathSciNetGoogle Scholar
  130. [116]
    Lai, T.L. and Stout, W. (1978). The law of the iterated logarithm and upper-lower class tests for partial sums of stationary Gaussian sequences. Ann. Prob. 6, 731–750.zbMATHMathSciNetGoogle Scholar
  131. [117]
    Lai, T.L. and Stout, W. (1980). Limit theorems for sums of dependent random variables. Z. Wahrscheinlichkeitstheorie verw. Geb. 51, 1–14.zbMATHMathSciNetGoogle Scholar
  132. [118]
    Lamperti, J.W. (1962). Semi-stable stochastic processes. Trans. Amer. Math. Soc. 104, 62–78.zbMATHMathSciNetGoogle Scholar
  133. [119]
    Lamperti, J.W. (1972). Semi-stable Markov processes I. Z. Wahrscheinlichkeitstheorie verw. Geb. 22, 205–225.zbMATHMathSciNetGoogle Scholar
  134. [120]
    Lang, R. and Xank, N.X. (1983). Strongly correlated random fields as observed by a random walker. Z. Warhscheinlichkeitstheorie verw. Geb. 64, 327–340.zbMATHGoogle Scholar
  135. [121]
    Lawrence, A.J. and Kottegoda, N.T. (1977). Stochastic modelling of river-flow time series. J. Royal Statis. Soc. A. 140, Part 1, 1–47.Google Scholar
  136. [122]
    Lepage, R., Woodroofe, M. and Zinn, J. (1981). Convergence of a stable distribution via order statistics. Ann. Prob. 9, 624–632.zbMATHMathSciNetGoogle Scholar
  137. [123]
    Lettenmaier, D.P. and Burgess, S.J. (1977). Operational assessment of hydro-logical models of long-term persistence. Water Resour. Res. 13, 113–124.Google Scholar
  138. [123a]
    Lévy, P. (1948). Processus Stochastiques et Mouvement Brownien. Paris: Gauthier-Villars.zbMATHGoogle Scholar
  139. [124]
    Li, W.K. (1981). Topics in time series modelling. Thesis, University of Western Ontario.Google Scholar
  140. [125]
    Li, W.K. and McLeod, A.I. (1983). Fractional time series modelling. Preprint, University of Western Ontario.Google Scholar
  141. [126]
    Linde, W. (1983). Infinitely Divisible and Stable Measures on Banach Spaces. Teubner-Texte zur Mathematik. Band 58, Leipzig.Google Scholar
  142. [127]
    Logan, B.F., Mallows, C.L., Rice, S.O. and Shepp, L.A. (1973). Limit distributions of self-normalized sums. Ann. Probability 1, 788–809.zbMATHMathSciNetGoogle Scholar
  143. [128]
    Lou, J.-H. (1985). Some properties of a special class of self-similar processes. Z. Wahrscheinlichkeitstheorie und verw. Geb. 68, 493–502.zbMATHGoogle Scholar
  144. [129]
    Lovejoy, S. (1982). Area-perimeter relation for rain and cloud areas. Science 216, 185–187.Google Scholar
  145. [130]
    Lovejoy, S. and Schertzer, D. (1982). Buoyancy, shear, scaling and fractals. Preprint.Google Scholar
  146. [130a]
    Lovejoy, S., Mandelbrot, B.B. (1985). Fractal properties of rain, and a fractal model. Tellus, 37A, 209–232.Google Scholar
  147. [131]
    Maejima, M. (1981). Some sojourn time problems for strongly dependent Gaussian processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 57, 1–14.zbMATHMathSciNetGoogle Scholar
  148. [132]
    Maejima, M. (1982). Some limit theorems for sojourn times of strongly dependent Gaussian processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 60, 359–380.zbMATHMathSciNetGoogle Scholar
  149. [133]
    Maejima, M. (1982). On the weak convergence to a self-similar process without finite variance. Preprint.Google Scholar
  150. [134]
    Maejima, M. (1983). On a class of self-similar processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 62, 235–245.zbMATHMathSciNetGoogle Scholar
  151. [135]
    Maejima, M. (1983). A self-similar process with nowhere bounded sample paths. Z. Wahrscheinlichkeitstheorie verw. Geb. 65, 115–119.zbMATHMathSciNetGoogle Scholar
  152. [136]
    Maejima, M. (1985). Some sojourn time problems for two-dimensional Gaussian processes. J. Multivar. Anal. (To appear.)Google Scholar
  153. [137]
    Maejima, M. (1985). Sojourns of multidimensional Gaussian processes with dependent components. Preprint.Google Scholar
  154. [138]
    Maejima, M. (1985). Sojourn of multidimensional Gaussian processes. Appears in this volume.Google Scholar
  155. [139]
    Maejima, M. and Rachev, S.T. (1984). An ideal metric and the rate of convergence to a self-similar process. Preprint.Google Scholar
  156. [140]
    Major, P. (1981). Multiple Wiener-Itô Integrals. Springer Lecture Notes in Mathematics 849. New York: Springer-Verlag.Google Scholar
  157. [141]
    Major, P. (1981). Limit theorems for non-linear functionals of Gaussian sequences. Z. Wahrscheinlichkeitstheorie verw. Geb. 57, 129–158.zbMATHMathSciNetGoogle Scholar
  158. [142]
    Major, P. (1982). On renormalizing Gaussian fields. Z. Wahrscheinlichkeitstheorie verw. Geb. 59, 515–533.zbMATHMathSciNetGoogle Scholar
  159. [143]
    Major, P. (1982). On a class of self-similar fields. Preprint.Google Scholar
  160. [144]
    Major, P. and Szasz D. (1980). On the effect of collisions on the motion of an atom in R’. Ann. Probability 8, 1068–1078.zbMATHMathSciNetGoogle Scholar
  161. [145]
    Malevich, T.L. and Abdalimov, B. (1977). Stable limit distributions for U-statistics. Th. of Prob. and Applic. 22, 370–377.zbMATHGoogle Scholar
  162. [146]
    Mandelbaum, A. and Taqqu, M.S. (1983). Invariance principle for symmetric statistics. The Annals of Statistics 12, 483–496.MathSciNetGoogle Scholar
  163. [146a]
    Mandelbrot, B.B. (1960). The Pareto-Lévy law and the distribution of income. International Economic Review 1, 79–106.zbMATHGoogle Scholar
  164. [146b]
    Mandelbrot, B.B. (1961). Stable Paretian random functions and the multiplicative variation of income. Econometria 29, 517–543.zbMATHMathSciNetGoogle Scholar
  165. [147]
    Mandelbrot, B.B. (1963). The variation of certain speculative prices. Journal of Business 36, 394–419. Reprinted in P.H. Cootner, ed., The Random Character of Stock Market Prices (Cambridge, Mass: MIT Press, 1964 ), 297–337.Google Scholar
  166. [148]
    Mandelbrot, B.B. (1965). Une classe de processus stochastiques homothétiques à soi; application à la loi climatologique de H. E. Hurst. Comptes Rendus 240, 3274–3277.MathSciNetGoogle Scholar
  167. [149]
    Mandelbrot, B.B. (1965). Self-similar error clusters in communications systems and the concept of conditional systems and the concept of conditional stationarity. I.E.E.E. Trans. on Communications Technology, COM-13, 71–90.Google Scholar
  168. [150]
    Mandelbrot, B.B. (1969). Long-run linearity, locally Gaussian processes, H-spectra and infinite variances. International Econom. Rev. 10, 82–113.zbMATHGoogle Scholar
  169. [151]
    Mandelbrot, B.B. (1971). A fast fractional Gaussian noise generator. Water Resour. Res. 7, 543–553.Google Scholar
  170. [152]
    Mandelbrot, B.B. (1972). Statistical methodology for non-periodic cycles: from the covariance to R/S analysis. Ann. Econom. Soc. Measurement 1, 259–290.Google Scholar
  171. [153]
    Mandelbrot, B.B. (1972). Broken line process derived as an approximation to fractional noise. Water Resour. Res. 8, 1354–1356.Google Scholar
  172. [153a]
    Mandelbrot, B.B. (1974). Intermittent turbulence in self similar cascades; divergence of high moments and dimension of the carrier. J. Fluid Mechanics 62, 331–358.zbMATHGoogle Scholar
  173. [154]
    Mandelbrot, B.B. (1975). Limit theorems on the self-normalized range for weakly and strongly dependent processes. Z. Wahrscheinlichkeitstheorie verw. Geb. 31, 271–285.zbMATHMathSciNetGoogle Scholar
  174. [155]
    Mandelbrot, B.B. (1976). Intermittent turbulence and fractal dimension: kurtosis and the spectral exponent 5/3+B. In —it Turbulence and Navier Stokes Equations, R. Teman, ed., Springer Lecture Notes in Math., Vol. 565, 121–145.Google Scholar
  175. [156]
    Mandelbrot, B.B. (1979). On scaling fractal facets of the Hurst effect, and a paper by Gomide. Preprint.Google Scholar
  176. [157]
    Mandelbrot, B.B. (1979). Stationarity, ergodic, settled and vagrant time series and the Hurst effect. Preprint.Google Scholar
  177. [158]
    Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. San Francisco: W.H. Freeman.zbMATHGoogle Scholar
  178. [159]
    Mandelbrot, B.B. (1984). Fractals in physics: squig clusters, diffusions, fractal measures, and the unicity of fractal dimensionality. J. of Stat. Phys. 34, 895–930.MathSciNetGoogle Scholar
  179. [159a]
    Mandelbrot, B.B. (1984). Squig sheets and some other squig fractal constructions. J. Statistical Physics, 36, 519–545.zbMATHMathSciNetGoogle Scholar
  180. [159b]
    Mandelbrot, B.B. (1985). Self-affine fractals and fractal dimension. To appear in Scripta Physica.Google Scholar
  181. [159c]
    Mandelbrot, B.B. (1985). Self-affine fractal sets, Parts I,II,III. To appear in Fractals in Physics (Trieste 1985 ). Ed. by Pietronero, L. and Tosatti, E., North Holland Publishing Company.Google Scholar
  182. [160]
    Mandelbrot, B.B. and Van Ness, J.W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review 10, 422–437.zbMATHMathSciNetGoogle Scholar
  183. [161]
    Mandelbrot, B.B. and Taqqu, M.S. (1979). Robust R/S analysis of long-run serial correlation. Proceedings of the 42nd Session of the International Statistical Institute, Manila. Bulletin of the I.S.I., Vol. 48, Book 2, pp. 69–104.MathSciNetGoogle Scholar
  184. [162]
    Mandelbrot, B.B. and Wallis, J.R. (1968). Noah, Joseph and operational hydrology. Water Resour. Res. 4, 909–918.Google Scholar
  185. [163]
    Mandelbrot, B.B. and Wallis, J.R. (1969). Computer experiments with fractional Gaussian noises. Parts 1,2,3. Water Resour. Res. 5, 228–267.Google Scholar
  186. [164]
    Mandelbrot, B.B. and Wallis, J.R. (1969). Some long-run properties of geophysical records. Water Resour. Res. 5, 321–340.Google Scholar
  187. [165]
    Mandelbrot, B.B. and Wallis, J.R. (1969c). Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence. Water Resour. Res. 5, 967–988.Google Scholar
  188. [166]
    Manneville, P. (1980). Intermittency, self-similarity and 1/f ‘spectrum in dissipative dynamical systems. Le Journal de Physique 41, 1235–1242.MathSciNetGoogle Scholar
  189. [167]
    Maruyama, G. (1976). Nonlinear functionals of Gaussian stationary processes and their applications. Proc. 3rd Japan-USSR Symposium on Probability Th. (Tashkent 1975). Springer Lecture Notes in Math., Vol. 550, 375–378.MathSciNetGoogle Scholar
  190. [168]
    Maruyama, G. (1982). Applications of the multiplication of the Itô-Wiener expansions to limit theorems. Proc. Japan Acad. 58A, 388–390.zbMATHMathSciNetGoogle Scholar
  191. [169]
    McConnell, T. and Taqqu, M.S. (1984). Double integration with respect to stable processes. School of Operations Research and Industrial Engineering Technical Report No. 599, Cornell University.Google Scholar
  192. [170]
    McConnell, T. and Taqqu, M.S. (1984). Decoupling inequalities for multilinear forms in symmetric random variables. To appear in Annals of Probability.Google Scholar
  193. [171a]
    McKean, H.P. (1963). Brownian motion with a several dimensional time. Th. Prob. Appl. 8, 357–378.MathSciNetGoogle Scholar
  194. [171b]
    McKean, H.P. (1973). Wiener’s theory of non-linear noise. In Stochastic Differential Equations, SIAM-AMS Proc. 6, 191–209.Google Scholar
  195. [171c]
    McKean, H.P. (1973). Geometry of differential space. Ann. Prob. 1, 197–206.zbMATHMathSciNetGoogle Scholar
  196. [172]
    McLeod, A.I. and Hipel, K.W. (1978). Preservation of the resealed adjusted range. Parts 1,2,3. Water Resour. Res. 14, 491–518.Google Scholar
  197. [173]
    McLeod, A.I. and Hipel, K.W. (1983). Perspectives in long-memory modelling. Preprint.Google Scholar
  198. [174]
    Mejia, J.M., Rodriguez-Iturbe, I. and Dawdy, D.R. (1972). Streamflow simulation 2. The broken line process as a potential model for hydrological simulation. Water Resour. Res. 8, 931–941.Google Scholar
  199. [175]
    Meyer, P.A. (1966), ed. Séminaire de probabilités X, Université de Strasbourg. Lecture notes in Math. 511. Heidelberg: Springer-Verlag.Google Scholar
  200. [176]
    Mijnheer, J.L. (1975). Sample Path Properties of Stable Processes. Mathematical Centre Tracts 59. Amsterdam: Mathematisch Centrum.Google Scholar
  201. [177]
    Mohr, D. (1981). Modelling data as a fractional Gaussian noise. Ph.D. dissertation, Princeton University.Google Scholar
  202. [178]
    Mohr, D. (1981). Estimating the parameters of a fractional Gaussian noise. Preprint.Google Scholar
  203. [179]
    Mohr, D. (1981). A spectral estimate of Hurst’s parameter. Preprint.Google Scholar
  204. [180]
    Montroll, E.W. and Shlesinger, M.F. (1982). On 1/f noise and other distributions with long tails. Proc. Nat. Acad. Sci. USA 79, 3380–3383.zbMATHMathSciNetGoogle Scholar
  205. [181]
    Mori, T. and Oodaira, H. (1984). The law of the iterated logarithm for self-similar processes represented by multiple Wiener integrals. Preprint.Google Scholar
  206. [182]
    Mori, T. and Oodaira, H. (1985). The functional iterated logarithm law for stochastic processes represented by multiple Wiener integrals. Preprint.Google Scholar
  207. [183]
    Neveu, J. (1968). Processus Aléatoires Gaussiens. Les Presses de l’Université de Montréal, Montréal.zbMATHGoogle Scholar
  208. [184]
    Newman, C.M. (1981). Self-similar random fields in mathematical physics. In: Measure Theory and Applications, Goldin, G. and Wheeler, R. eds.Google Scholar
  209. [185]
    O’Brien, G.L. and Vervaat, W. (1983). Marginal distributions of self-similar processes with stationary increments. Z. Wahrscheinlichkeitstheorie verw. Geb. 64, 129–138.zbMATHMathSciNetGoogle Scholar
  210. [186]
    O’Brien, G.L. and Vervaat, W. (1985). Self-similar processes with stationary increments generated by point processes. Ann. Prob. 13, 28–52.zbMATHMathSciNetGoogle Scholar
  211. [187]
    O’Connell, P.E. (1977). ARIMA models in synthetic hydrology. In Mathematical Models for Surface Water Hydrology, T.A. Ciriani, V. Maione, J.R. Wallis, ed., pp. 51–68, New York: J. Wiley and Sons.Google Scholar
  212. [188]
    Ocone, D. (1983). Multiple integral expansions for nonlinear filtering. Stochastics 10, 1–30.zbMATHMathSciNetGoogle Scholar
  213. [189]
    Oodaira, H. (1973). The law of the iterated logarithm for Gaussian processes. Ann. Prob. 1, 954–967.zbMATHMathSciNetGoogle Scholar
  214. [190]
    Parzen, E. (1983). Time series, model identification, memory and quantiles. Preprint.Google Scholar
  215. [191]
    Peligrad, M. (1985). Recent advances in the central limit theorem and its weak invariance principle for mixing sequences of random variables (a survey). Appears in this volume.Google Scholar
  216. [192]
    Percival, D.B. (1983). The statistics of long memory processes. Thesis, University of Washington.Google Scholar
  217. [193]
    Perez-Abreu, V. (1985). Product stochastic measures, multiple stochastic integrals and their extensions to nuclear space valued processes. Tech. Report 107, Center for Stoch. Processes, Univ. of North Carolina, Chapel Hill.Google Scholar
  218. [193a]
    Pietrorino, L. and Tosatti, E. (1986) Fractals in Physics ( Trieste 1985 ). To be published by North Holland.Google Scholar
  219. [194]
    Plikusas, A. (1980). Estimation of cumulants and large deviations for certain nonlinear transformations of a stationary Gaussian process. Lithuanian Mat. Journal 20 (2), 150–156.MathSciNetGoogle Scholar
  220. [195]
    Plikusas, A. (1981). Some properties of the multiple Itô integral. Lithuanian Mat. Journal 21 (2), 184–191.zbMATHMathSciNetGoogle Scholar
  221. [196]
    Resnick, S.I. (1983). Point processes, regular variation and weak convergence. Preprint: To appear in the Journal of Applied Probability.Google Scholar
  222. [197]
    Richardson, L.F. (1922). Weather Prediction by Numerical Process. (Reprinted in 1965.) London: Cambridge Univ. Press.Google Scholar
  223. [198]
    Rosenblatt, M. (1961). Independence and dependence. Proc. 4th Berkeley Sympos. Math. Statist. Probab., 411–443. Berkeley: Univ. Calif. Press.Google Scholar
  224. [199]
    Rosenblatt, M. (1976). Fractional integrals of stationary processes and the central limit theorem. J. Appl. Probability 13, 723–732.zbMATHMathSciNetGoogle Scholar
  225. [200]
    Rosenblatt, M. (1979). Some limit theorems for partial sums of quadratic forms in stationary Gaussian variables. Z. Wahrscheinlichkeitstheorie verw. Geb. 49, 125–132.zbMATHMathSciNetGoogle Scholar
  226. [201]
    Rosenblatt, M. (1981). Limit theorems for Fourier transforms of function-als of Gaussian sequences. Z. Wahrscheinlichkeitstheorie verw. Geb. 55, 123–132.zbMATHMathSciNetGoogle Scholar
  227. [202]
    Rosenblatt, M. (1983). Stochastic processes with short-range and long-range dependence. Preprint.Google Scholar
  228. [203]
    Rosinski, J. (1985). On stochastic integral representation of stable processes with sample paths in Banach spaces. Preprint.Google Scholar
  229. [204]
    Rosinski, J. and Woyczynski, W.A. (1984). Moment inequalities for real and vector p-stable stochastic processes. Preprint.Google Scholar
  230. [205]
    Rosinski, J. and Woyczynski, W.A. (1984). Products of random measures, multilinear random forms and multiple stochastic integrals. Proc. Measure Theory Conf. Oberwolfach 1983. Springer’s Lecture Notes in Math.Google Scholar
  231. [206]
    Rosinski, J. and Woyczynski, W.A. (1984). On Itô stochastic integration with respect to the p-stable motion: inner clock, integrability of sample paths, double and multiple integrals. Preprint.Google Scholar
  232. [207]
    Rvaceva, E.L. (1962). On domains of attraction of multi-dimensional distributions. Selected Translations in Math. Stat. and Prob. IMS-AMS, 2, 183–205.MathSciNetGoogle Scholar
  233. [208]
    Segall, A. and Kailath, T. (1976). Orthogonal functionals of independent-increment processes. IEEE Trans. Information Theory, Vol. IT-22, 287298.Google Scholar
  234. [209]
    Seminar notes on multiple stochastic integration, polynomials chaos and their applications (1985). Preprint No. 85–34. Dept. of Math. and Stat. Case Western Reserve Univ., Cleveland, OH 44106.Google Scholar
  235. [210]
    Shiryayev, A.N. (1981). Martingales: recent developments, results and applications. International Statistical Review 49, 199–233.MathSciNetGoogle Scholar
  236. [211]
    Shlesinger, M.F. and Hughes, B.D. (1981). Analogs of renormalization group transformations in random processes. Physica 190A, 597–608.MathSciNetGoogle Scholar
  237. [212a]
    Shlesinger, M.F., Mandelbrot, B.B., and Rubin, R.J. (1984). Fractals in Physics (Gaithersburg 1983). Appears in J. Statistical Physics,Vol. 34.Google Scholar
  238. [212]
    Sinai, Ya. G. (1976). Self-similar probability distributions. Theory Probability Appl. 21, 64–80.zbMATHMathSciNetGoogle Scholar
  239. [213]
    Slepian, D. (1972). On the symmetrized Kronecker power of a matrix and extensions of Mehler’s formula for Hermite polynomials. SIAM J. Math. Anal. 3, 606–616.zbMATHMathSciNetGoogle Scholar
  240. [214]
    Spitzer, F. (1969). Uniform motion with elastic collision of an infinite particle systems. J. Math. Mech. 18, 973–990.MathSciNetGoogle Scholar
  241. [215]
    Srikanthan, R. and McMahon, T.A. (1979). Generation of skewed annual flows using fast fractional Gaussian noise generator. Preprint.Google Scholar
  242. [216]
    Sun, T.C. (1963). A central limit theorem for non-linear functions of a normal stationary process. J. Math. Mech. 12, 945–978.zbMATHMathSciNetGoogle Scholar
  243. [217]
    Sun, T.C. (1965). Some further results on central limit theorems for nonlinear functions of a normal stationary process. J. Math. Mech. 14, 71–85.zbMATHMathSciNetGoogle Scholar
  244. [218]
    Sun, T.C. and Ho, H.C. (1985). On central and non-central limit theorems for non-linear functions of a stationary Gaussian process. Appears in this volume.Google Scholar
  245. [219]
    Surgailis, D. (1979). On self-similar stable random fields; Abstract listed in the Colloquium on “Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory,” Janos Bolyai Math. Society, Esztergom, Hungary.Google Scholar
  246. [220]
    Surgailis, D. (1981). Convergence of sums of nonlinear functions of moving averages to self-similar processes. Soviet Mathematics 23, 247–250.zbMATHGoogle Scholar
  247. [221]
    Surgailis, D. (1981). On infinitely divisible self-similar random fields. Z. Wahrscheinlichkeitstheorie verw Geb. 58, 453–477.zbMATHMathSciNetGoogle Scholar
  248. [222]
    Surgailis, D. (1981c). On L2 and non-L2 multiple stochastic integration. Stochastic Differential Systems. Lecture Notes in Control and Information Sciences 36 New York: Springer-Verlag.Google Scholar
  249. [223]
    Surgailis, D. (1981d). Convergence of sums of nonlinear functions of moving averages to self-similar processes. Soviet Math. Doklady 23, 247–250.zbMATHGoogle Scholar
  250. [224]
    Surgailis, D. (1983). Zones of attraction of self-similar multiple integrals. Lithuanian Mat. Journal 22, 327–340.zbMATHGoogle Scholar
  251. [225]
    Surgailis, D. (1983). On Poisson multiple stochastic integrals and associated equilibrium Markov processes. Theory and Applications of Random Fields. Lecture Notes in Control and Information Sciences 49, New York: Springer-Verlag.Google Scholar
  252. [226]
    Surgailis, D. (1984). On multiple Poisson stochastic integrals and associated Markov semigroups. Probability and Math. Stat. 3, 217–239.MathSciNetGoogle Scholar
  253. [227]
    Surgailis, D. (1985). On the multiple stable integral. Preprint.Google Scholar
  254. [228]
    Suzuki, M. (1983). Phase transition and fractals. Progress of Theoretical Physics 69, 65–76.zbMATHMathSciNetGoogle Scholar
  255. [229]
    Suzuki, M. (1983). Long-time tail relaxation noise. In: Noise in Physical Systems and 1/f Noise. Suzuki, M, eds.), 73–79. Elsevier.Google Scholar
  256. [230]
    Suzuki, M. (1984). Finite-size scaling for transient similarity and fractals. Prog. Theor. Phys. 71, 1397–1400.zbMATHGoogle Scholar
  257. [231]
    Szasz, D. (1981). Joint diffusion on the line. In Random fields: rigorous results in statistical mechanics and quantum field theory. Colloquia Math-ematica Societatis Janos Bolyai, Vol. 27. Amsterdam: North-Holland.Google Scholar
  258. [232]
    Szatzschneider, W. (1975). A more deterministic version of HarrisSpitzer’s “Random constant velocity” model for infinite systems of particles. Probability Winter School, Karpacz, Poland 1975. Springer Lecture Notes in Math. 472, 157–167.MathSciNetGoogle Scholar
  259. [233]
    Szulga, J. and Woyczynski, W.A. (1983). Existence of a double random integral with respect to stable measures. J. Mult. Anal. 13, 194–201.zbMATHMathSciNetGoogle Scholar
  260. [234]
    Taqqu, M.S. (1970). Note on evaluations of R/S for fractional noises and geophysical records. Water Resources Research, 6, 349–350.Google Scholar
  261. [235]
    Taqqu, M.S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheorie verw. Geb. 31, 287–302.zbMATHMathSciNetGoogle Scholar
  262. [236]
    Taqqu, M.S. (1977). Law of the iterated logarithm for sums of non-linear functions of the Gaussian variables that exhibit a long range dependence. Z. Wahrscheinlichkeitstheorie verw. Geb. 40, 203–238.zbMATHMathSciNetGoogle Scholar
  263. [237]
    Taqqu, M.S. (1978). A representation for self-similar processes. Stochastic Proc. and their Applic. 7, 55–64.zbMATHMathSciNetGoogle Scholar
  264. [238]
    Taqqu, M.S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie verw. Geb. 50, 53–83.zbMATHMathSciNetGoogle Scholar
  265. [239]
    Taqqu, M.S. (1981). Self-similar processes and related ultraviolet and infrared catastrophes. In Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory. Colloquia Mathematica Societatis Janos Bolyai, Vol. 27, Book 2, pp. 1057–1096. North-Holland: AmsterdamGoogle Scholar
  266. [240]
    Taqqu, M.S. (1984). Sojourn in an elliptical domain. School of Operations Research and Industrial Engineering Technical Report No. 630, Cornell University. To appear in Stochastic Processes and their Applications.Google Scholar
  267. [241]
    Taqqu, M.S. (1985). Self-similar processes. To appear in Encyclopedia of Statistical Sciences.Google Scholar
  268. [242]
    Taqqu, M.S. and Czado, C. (1984). Reproducing kernel Hilbert space for some non-Gaussian processes. School of Operations Research and Industrial Engineering Technical Report No. 644, Cornell University.Google Scholar
  269. [243]
    Taqqu, M.S. and Czado, C. (1985). A survey of functional laws of the iterated logarithm for self-similar processes. Stochastic Models, 1(1), 77115.Google Scholar
  270. [244]
    Taqqu, M.S. and Goldberg, J. (1982). Regular multigraphs and their applications to the Monte Carlo evaluation of moments of non-linear functionals of Gaussian processes. Stochastic Processes and Their Applications 13, 121–138.zbMATHMathSciNetGoogle Scholar
  271. [245]
    Taqqu, M.S. and Levy, J. (1985). Using renewal processes to generate long-range dependence and high variability. School of Operations Research and Industrial Engineering Technical Report No. 566, Cornell University. Appears in this volume.Google Scholar
  272. [246]
    Taqqu, M.S. and Wolpert, R. (1983). Infinite variance self-similar processes subordinate to a Poisson measure. Z. Wahrscheinlichkeitatheorie verw. Geb. 62, 53–72.zbMATHMathSciNetGoogle Scholar
  273. [247]
    Thu, N.V. (1984). Fractional calculus in probability. Prob. and Math. Stat. 3, 173–189.Google Scholar
  274. [248]
    Todini, E. and O’Connell, P.E. (1979). Hydrological simulation of Lake Nasser: analysis and results. Vol. 1. Preprint: Institute of Hydrology, McLean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX108BB, Great Britain.Google Scholar
  275. [249]
    Van Harn, K. and Steutel, F.W. (1984). Integer-valued self-similar processes. Preprint.Google Scholar
  276. [250]
    Vervaat, W. (1985). Sample path properties of self-similar processes with stationary increments. Ann. Prob. 13, 1–27.zbMATHMathSciNetGoogle Scholar
  277. [251]
    Vervaat, W. (1985). Stationary self-similar extremal processes and random semicontinuous functions. Appears in this volume.Google Scholar
  278. [252]
    Weron, A. (1984). Stable processes and measures: a survey. Tech. Report 65, Center for Stochastic Processes. U. North Carolina.Google Scholar
  279. [253]
    Wiener, N. (1958). Nonlinear Problems in Random Theory. Cambridge: MIT Press.zbMATHGoogle Scholar
  280. [254]
    Wolf, D. (1978), ed. Noise in Physical Systems, Proc. of the Fifth International Conf. on Noise, Bad Nauheim, March 1978-Springer Series in Electro-physics, Vol. 2, New York: Springer Verlag.Google Scholar
  281. [255]
    Yaglom, A.M. (1958). Correlation theory of processes with random stationary nth increments. Amer. Math. Soc. Trawl. (2), 8, 87–141.zbMATHMathSciNetGoogle Scholar
  282. [256]
    Zygmund, A. (1979). Trigonometric Series. Vols. 1 and 2. Cambridge: Cambridge Univ. Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Murad S. Taqqu
    • 1
  1. 1.Department of MathematicsBoston UniversityBostonUSA

Personalised recommendations