Advertisement

Almost sure approximations for U-statistics

  • Herold Dehling
Part of the Progress in Probability and Statistics book series (PRPR, volume 11)

Abstract

U-statistics have been introduced by Hoeffding in 1948 [13] as generalizations of the sample mean. Let X 1, X 2 ... be a sequence of i.i.d real-valued random variables.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    CsSki, E.: On the standardized empirical distribution function. Coll. Mathem. Soc. Janos Bolyai, 32. Non-parametric Statistical Inference, pp. 123–138. Budapest (1980).Google Scholar
  2. [2]
    Dehling, H.: Limit theorems for sequences of weakly dependent Banach space valued random variables. Z. Wahrscheinlichkeitstheorie verw. Gebiete 63, 393432 (1983).Google Scholar
  3. [3]
    Dehling, H.; Denker, M.; Philipp, W.: Invariance principles for von Mises and U-statistics. Z. Wahrscheinlichkeitstheorie verw. Gebiete 67, 139–167 (1984).CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Dehling, H.:Denker, M.; Philipp, W.: A bounded law of the iterated logarithm for Hilbert space valued martingales and its application to U-statistics. Z. Wahrscheinlichkeitstheorie verw. Gebiete (to appear).Google Scholar
  5. [5]
    Dehling, H.: The functional law of the iterated logarithm for von Mises functionals, preprint (1984).Google Scholar
  6. [6]
    Denker, M.: Asymptotic Theory in Nonparametric Statistics. Braunschweig-Wiesbaden: Vieweg Verlag (1985).Google Scholar
  7. [7]
    Denker, M.; Grillenberger, Chr.; Keller, G.: A note on invariance principles for von Mises statistics. Metrika (to appear).Google Scholar
  8. [8]
    de Wet, T.; Venter. J.H.: Asymptotic distributions for quadratic forms with applications to tests of fit. Ann. Statistics 1, 380–387 (1973).CrossRefzbMATHGoogle Scholar
  9. [9]
    Doob, J.L.: Stochastic processes. New York: Wiley (1953).zbMATHGoogle Scholar
  10. [10]
    Dudley, R.M.; Philipp, W.: Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 62, 509–552.Google Scholar
  11. [11]
    Dynkin, E.B.; Mandelbaum, A.: Symmetric statistics, Poisson point processes and multiple Wiener integrals. Ann. Statistics 11, 739–745 (1983).CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    Filippova, A.A.: Mises’ theorem on the asymptotic behavior of functionals of empirical distribution functions and its statistical applications. Theory Probability Appl. 7, 24–57 (1961).CrossRefGoogle Scholar
  13. [13]
    Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Statistics 19, 293–325 (1948).CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    Kac, M.; Siegert, A.J.F.: An explicit representation of a stationary Gaussian process. Ann. Math. Statistics 18, 438–442 (1947).CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    Komlos, J.; Major, P.; Tusnady, G.: An approximation of partial sums of independent RV’s and the sample d.f. I and II. Z. Wahrscheinlichkeitstheorie verw. Gebiete 32, 111–131 (1975) and 34, 33–58 (1976).zbMATHMathSciNetGoogle Scholar
  16. [16]
    Kuelbs, J.; Philipp, W.: Almost sure invariance principles for partial sums of mixing B-valued random variables. Ann. Probability 8, 1003–1036 (1980).CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    Major, P.: The approximation of partial sums of independent RV’s. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 213–220 (1976).Google Scholar
  18. [18]
    Major,P.: Approximation of partial sums of i.i.d. r.v.’s when the summands have only two moments. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 221229 (1976).Google Scholar
  19. [19]
    Mandelbaum, A.; Taqqu, M.S.: Invariance principles for symmetric statistics. Ann. Statistics 12, 483–496 (1984).CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    von Mises, R.: On the asymptotic distribution of differentiable statistical functions. Ann. Math. Statistics 18, 309–348 (1947).CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    Mori, T.; Oodaira, H.: The law of the iterated logarithm for self-similar processes represented by multiple Wiener integrals. preprint (1985).Google Scholar
  22. [22]
    Morrow,G.J.; Philipp, W.: An almost sure invariance principle for Hilbert space valued martingales. TAMS 273, 231–251 (1982).CrossRefGoogle Scholar
  23. [23]
    Neuhaus, G.: Functional limit theorems for U-statistics in the degenerate case. J. Multivariate Analysis 7, 424–439 (1977).CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    Philipp, W.: Almost sure invariance principles for sums of B-valued random variables. Probability in Banach spaces II, Lecture Notes in Math. 709, 171–193, Berlin-Heidelberg-New York: Springer Verlag (1979).Google Scholar
  25. [25]
    Philipp, W.; Stout, W.F.: Almost sure invariance principles for partial sums of weakly dependent random vectors. Memoirs of the AMS 161, (1975).Google Scholar
  26. [26]
    Sen, P.K.: Almost sure behavior of U-statistics and von Mises differentiable statistical functions. Ann. Statistics 2, 387–396 (1974).CrossRefzbMATHGoogle Scholar
  27. [27]
    Skorohod, A.V.: On a representation of random variables. Theory Probability Appl. 21, 628–632 (1976).CrossRefGoogle Scholar
  28. [28]
    Strassen, V.: An almost sure invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Gebiete 3, 211–226 (1964).CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    Strassen, V.: The existence of probability measures with given marginals. Ann. Math. Statistics 36, 423–439 (1967).CrossRefMathSciNetGoogle Scholar
  30. [30]
    Yurinskii, V.V.: On the error of the Gaussian approximation for convolutions. Theory Probability Appl. 22, 236–247 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Herold Dehling
    • 1
  1. 1.Institut für Mathematische StochastikUniversität GöttingenGöttingenFed. Rep. of Germany

Personalised recommendations