Advertisement

Hausdorff dimension of sample paths for self-similar processes

  • Norio Kôno
Chapter
Part of the Progress in Probability and Statistics book series (PRPR, volume 11)

Abstract

First we consider a real continuous function f defined on I = [0,1] which satisfies a uniform Hölder condition:
(1)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.M. Berman; Local times and sample funciton properties of stationary Gaussian processes. Trans. Amer. Math. Soc. 137 (1969), 277–299.CrossRefzbMATHGoogle Scholar
  2. [2]
    D. Geman and J. Horowitz; Local times for real and random functions. Duke Math. J. 43 (1976), 809–828.zbMATHMathSciNetGoogle Scholar
  3. [3]
    S. Orey; Gaussian sample functions and the Hausdorff imension of level crossings. Z. Wahr. Geb. 15 (1970), 249–256.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    S. J. Taylor; The Hausdorrf a-dimensional measure of Brownian paths in n-space. Camb. Phil. Soc. 49 (1953), 31–39.CrossRefzbMATHGoogle Scholar
  5. [5]
    S. J. Taylor; The a-dimensional measure of the graph and set of zeros of a Brownian path. Ibid. 51 (1955), 265–274.zbMATHGoogle Scholar
  6. [6]
    S. J. Taylor; On the connexion between Hausdorff mea- sures and generalized capacity. Ibid. 57 (1961), 524–531.zbMATHGoogle Scholar
  7. [7]
    I. A. Ibragimov; On smoothenss conditions for trajectories on random functions. Theory of Prob. App. 28 (1984), 240–262.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Norio Kôno
    • 1
  1. 1.Institute of Mathematics Yoshida CollegeKyoto UniversityKyoto, 606Japan

Personalised recommendations