Advertisement

Extreme values for stationary sequences

  • George L. O’Brien
Part of the Progress in Probability and Statistics book series (PRPR, volume 11)

Abstract

Let (Xn) n = 1 be a strictly stationary real-valued sequence and let F(x) = P[X1 ≤ x]. Let Mi,j = max(Xi+1,..., Xj) and Mj = max(X1,...,Xj) = M0,j. Let (cn) n = 1 be a sequence of real numbers. The purpose of this article is to review the theory of the asymptotic behaviour of P[Mn ≤ cn] as n → ∞. We mainly consider aspects which are not treated in Leadbetter, Lindgren and Rootzén [4]. To avoid trivialities we assume that F(cn) < 1 for all n, F(cn) → 1, and P[X1 = sup{x: F(x) < 1}] = 0. All limits are “as n → ∞.”

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bradley, R. (1985). This volume.Google Scholar
  2. [2]
    Leadbetter, M.R. (1974). On extreme values in stationary sequences. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 28, 289–303.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Leadbetter, M.R. (1983). Extremes and local dependence in stationary sequences. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 65, 291–306.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Leadbetter, M.R., Lindgren, G., and Rootzén, H. (1983). Extremes and related properties of random sequences and processes. Springer Statistics Series. Berlin.CrossRefzbMATHGoogle Scholar
  5. [5]
    Loynes, R.M. (1965). Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Statist. 36, 993–999.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    Newell, G.F. (1964). Asymptotic extremes for m-dependent random variables,. Ann. Math. Statist. 35, 1322–1325.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    O’Brien, G.L. (1974). The maximum term of uniformly mixing stationary processes. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 30, 57–63.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    O’Brien, G.L. (1984). Extreme values for stationary and Markov sequences. To appear.Google Scholar
  9. [9]
    Rootzén, H. (1985). Maxima and exceedances of stationary Markov chains. To appear.Google Scholar
  10. [10]
    Watson, G.S. (1954). Extreme values in samples from m-dependent stationary stochastic processes. Ann. Math., Statist. 25, 798–800.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • George L. O’Brien

There are no affiliations available

Personalised recommendations