Summability Methods and Dependent Strong Laws

  • N. H. Bingham
Part of the Progress in Probability and Statistics book series (PRPR, volume 11)


We recall the classical Kolmogorov strong law of large numbers (see e.g. [16],[17]):


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. ASMUSSEN and T.G. KURTZ: Necessary and sufficient conditions for complete convergence in the law of large numbers. Ann. Probab. 8 (1980), 176–182.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    L.E. BAUM and M. KATZ: Convergence rates in the law of large numbers. Trans.Amer.Math.Soc. 120 (1965), 108–123.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    H.C.P. BERBEE: Convergence rates in the strong law for bounded mixing sequences. Report MS-R8412, Amsterdam, 1984.Google Scholar
  4. 4.
    N.H. BINGHAM: On Valiron and circle convergence. Math. Z. 186 (1984), 273–286.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    N.H. BINGHAM: On Euler and Borel summability. J.London Math.Soc. (2) 29 (1984), 141–146.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    N.H. BINGHAM: Tauberian theorems for summability methods of random-walk type. J.London Math.Soc. (2) 30 (1984), 281–287.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    N.H. BINGHAM and C.M. GOLDIE: Probabilistic and deterministic averaging. Trans.Amer.Math.Soc. 269 (1982), 453–480.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    N.H. BINGHAM: On one-sided Tauberian conditions. Analysis 3 (1983), 159–188.zbMATHMathSciNetGoogle Scholar
  9. 9.
    N.H. BINGHAM and M. MAEJIMA: Summability methods and almost sure convergence. Z. Wahrschein. 68 (1985), 383–392.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    N.H. BINGHAM and G. TENENBAUM: Riesz and Valiron means and fractional moments. Math.Proc.Camb.Phil.Soc., to appear.Google Scholar
  11. 11.
    R.C. BRADLEY: On the 0-mixing condition for stationary random sequences. Duke Math.J. 47 (1980), 421–433.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    K. CHANDRASEKHARAN and S. MINAKSHISUNDARAM: Typical means. Oxford Univ.Press, 1952.Google Scholar
  13. 13.
    Y.S. CHOW: Delayed sums and Borel summability of independent identically distributed random variables. Bull.Inst. Math. Acad. Sinica 1 (1973), 207–220.zbMATHGoogle Scholar
  14. 14.
    Y.S. CHOW and T.L.LAI: Some one-sided theorems on the tail-distribution of sample sums with applications to the last time and largest excess of boundary crossings. Trans. Amer.Math.Soc. 208 (1975), 51–72.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Y.S. CHOW and T.L.LAI: Paley-type inequalities and convergence rates related to the law of large numbers and extended renewal theory. Z. Wahrschein. 45 (1978), 1–19.CrossRefzbMATHGoogle Scholar
  16. 16.
    Y.S. CHOW and H. TEICHER: Probability theory: independence, interchangeability, martingales. Springer, New York, 1978.CrossRefzbMATHGoogle Scholar
  17. 17.
    K.L. CHUNG: A course in probability theory. Academic Press, New York, 1974.zbMATHGoogle Scholar
  18. 18.
    H. COHN: On a class of dependent random variables. Rev.Roum. Math.Pures Appl. 10 (1965), 1593–1606.zbMATHGoogle Scholar
  19. 19.
    C.G. ESSEEN and S. JANSON: On moment conditions for normed sums of independent random variables and martingale differences. Stoch.Proc.Appl. 19 (1985), 173–182.CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    N. ETEMADI: An elementary proof of the strong law of large numbers. Z. Wahrschein. 55 (1981), 119–122.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    P.R. HALMOS: Lectures on ergodic theory. Chelsea, New York,1960.Google Scholar
  22. 22.
    G.H. HARDY: The second consistency theorem for summable series. Proc.London Math. Soc. (2) 15 (1916), 72–88 (Collected Works of G.H. Hardy VI, 588–605, Oxford Univ. Press, 1974 ).Google Scholar
  23. 23.
    G.H. HARDY: Divergent series. Oxford Univ. Press, 1949.Google Scholar
  24. 24.
    G.H. HARDY and M. RIESZ: The general theory of Dirichlet series. Cambridge Univ. Press, 1952.Google Scholar
  25. 25.
    C.R. HEATHCOTE: Complete exponential convergence and some related topics. J.Appl. Probab. 4 (1967), 217–256 (Methuen Review Series in Applied Probability Vol. 7).Google Scholar
  26. 26.
    I.A. IBRAGIMOV and Yu. V. LINNIK: Independent and stationary sequences of random variables. Walters-Noordhoff, Groningen, 1971.zbMATHGoogle Scholar
  27. 27.
    M. IOSIFESCU and R. THEODORESCU: Random processes and learning. Springer, New York, 1969.CrossRefzbMATHGoogle Scholar
  28. 28.
    N. C. JAIN, K. JOGDEO and W.F. STOUT: Upper and lower functions for martingales and mixing processes. Ann. Probab. 3 (1975), 119–145.CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    T.L. LAI: Limit theorems for delayed sums. Ann. Probab. 2 (1974), 432–440.CrossRefzbMATHGoogle Scholar
  30. 30.
    T.L. LAI: Summability methods for independent, identically distributed random variables. Proc.Amer. Math.Soc. 45 (1974), 253–261.zbMATHGoogle Scholar
  31. 31.
    T.L. LAI: On r-quick convergence and a conjecture of Strassen. Ann.Probab. 4 (1976), 612–627.CrossRefzbMATHGoogle Scholar
  32. 32.
    T.L. LAI: Convergence-rates and r-quick versions of the strong law for stationary mixing sequences. Ann. Probab. 5 (1977), 693–706.CrossRefzbMATHGoogle Scholar
  33. 33.
    G.L. O’BRIEN: Path properties of successive sample maxima from stationary processes. Z. Wahrschein. 38 (1977), 313–327.CrossRefGoogle Scholar
  34. 34.
    M. PELIGRAD: Convergence rates of the strong law for stationary mixing sequences. Z.Wahrschein. 70 (1985), 307–314.zbMATHMathSciNetGoogle Scholar
  35. 35.
    V. V. PETROV: Sums of independent random variables. Springer, New York, 1975.CrossRefGoogle Scholar
  36. 36.
    W.F. STOUT: Almost sure convergence. Academic Press, New York, 1974.zbMATHGoogle Scholar
  37. 37.
    V. STRASSEN: Almost sure behaviour of sums of independent random variables and martingales. Proc. Fifth Berkeley Symp. Math.Statist. Probab. 2 (1967), 315–343.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • N. H. Bingham
    • 1
  1. 1.Mathematics DepartmentRoyal Holloway and Bedford New College, (University of London)SurreyUK

Personalised recommendations