Advertisement

Invariance Principles for Independent and Weakly Dependent Random Variables

  • Walter Philipp
Part of the Progress in Probability and Statistics book series (PRPR, volume 11)

Abstract

During the last three decades the concept “invariance principle” has undergone several subtle changes. In the early 1950’s an invariance principle was a result that nowadays often would be called a functional central limit theorem (FCLT). At present the term “invariance principle” generally stands as a synonym for an approximation theorem: A given process, such as a partial sum process, an empirical process, an extremal process, a U-statistic, etc. is approximated in distribution, in probability, in LP or almost surely by a canonical process, such as a Brownian motion, a Kiefer process, a special extremal process or in case of a U-statistic by a multiple stochastic integral.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.P. Annals of ProbabilityGoogle Scholar
  2. Z.W. Zeitschrift für Wahrscheinlichkeitstheorie verw. Geb.Google Scholar
  3. Alexander, K. S. (1984). Probability inequalities for empirical processes and a law of the iterated logarithm, A.P. 12, 1041–1067.zbMATHGoogle Scholar
  4. Alexander, K. S. (1984). The central limit theorem for empirical processes on Vapnik-Cervonenkis classes, preprint.Google Scholar
  5. Alexander, K. S. (1984). Central limit theorems for stochastic processes under random entropy conditions, preprint.Google Scholar
  6. Aly, E.-E.A.A., Beirlant, J. and Horvâth, L. (1984). Strong and weak approximations of k-spacings processes, Z.W. 66, 461–484.zbMATHGoogle Scholar
  7. Basu, A. K. (1973). A note on Strassen’s law of the law of the iterated logarithm, Proc. AMS 41, 596–601.zbMATHGoogle Scholar
  8. Berbee, H. C. P. (1979). Random walks with stationary increments and renewal theory. Amsterdam: Mathematical Centre tract 112.zbMATHGoogle Scholar
  9. Berbee, H. C. P. (1984). Convergence rates in the strong law for bounded mixing sequences, preprint.Google Scholar
  10. Berkes, I. (1973). A functional law of the iterated logarithm for dependent random variables, Z.W. 26, 245–258.zbMATHMathSciNetGoogle Scholar
  11. Berkes, I. (1973). On Strassen’s version of the log log law for multiplicative systems, Studia Sci. Math. Hungar. 8, 425–431.MathSciNetGoogle Scholar
  12. Berkes, I. (1975). Approximation of lacunary Walsh series with Brownian motion, Studia Sci. Math. Hungar. 9, 111–124.zbMATHMathSciNetGoogle Scholar
  13. Berkes, I. (1975). An almost sure invariance principle for lacunary trigonometric series, Acta Math. Acad. Sci. Hungar. 26, 209–220.zbMATHMathSciNetGoogle Scholar
  14. Berkes, I. (1976). On the asymptotic behaviour of E f(nkx), I and II, Z.W. 34, 319–345 and Z.W. 34, 347–365.zbMATHMathSciNetGoogle Scholar
  15. Berkes, I., Dabrowski, A., Dehling, H. and Philipp, W. (1985). A strong approximation theorem for sums of random vectors in the domain of attraction to a stable law, Acta Math. Acad. Sci. Hungar. (to appear).Google Scholar
  16. Berkes, I. and Philipp, W. (1977). An almost sure invariance principle for the empirical distribution function of mixing random variables, Z.W. 41, 115–137.zbMATHMathSciNetGoogle Scholar
  17. Berkes, I. and Philipp, W. (1979). Approximation theorems for independent and weakly dependent random vectors, A.P. 7, 29–54.zbMATHMathSciNetGoogle Scholar
  18. Berkes, I. and Philipp, W. (1979). An a.s. invariance principle for lacunary series f(nkx), Acta Math. Acad. Sci. Hungar. 34, 141–155.zbMATHMathSciNetGoogle Scholar
  19. Berger, E. (1982). Fastsichere Approximation von Partialsummen unabhangiger und stationärer ergodischer Folgen von Zufallsvektoren, Diss. Univ. Göttingen.Google Scholar
  20. Berger, E. (1982) (personal communication).Google Scholar
  21. Bhattacharya, R. N. (1982). On the functional central limit theorem for Markov processes, Z.W. 60, 185–201.zbMATHGoogle Scholar
  22. Billingsley, P. (1967) (personal communication).Google Scholar
  23. Billingsley, P. (1968). Convergence of probability measures, Wiley, N.Y.Google Scholar
  24. Bingham, N. H. (1985). Variants on the law of the iterated logarithm, Bull. London Math. Soc.Google Scholar
  25. Blum, J. R., Hanson, D. L. and Koopmans, L. (1963). On the strong law of large numbers for a class of stochastic processes, Z.W. 2, 1–11.zbMATHMathSciNetGoogle Scholar
  26. Bradley, R. C. (1983) (personal communication).Google Scholar
  27. Bradley, R. C. (1983). Approximation theorems for strongly mixing random variables, Michigan Math. J. 30, 69–81.zbMATHGoogle Scholar
  28. Bradley, R. C. (1984). On a very weak Bernoulli condition, Stochastics 13, 61–81.zbMATHMathSciNetGoogle Scholar
  29. Bradley, R. C. (1985) (personal communication).Google Scholar
  30. Bradley, R. C. (1985). Basic properties of strong mixing conditions, this volume.Google Scholar
  31. Bryc, W. (1982). On the approximation theorem of I. Berkes and W. Philipp, Demonstratio Math. 15, 807–816.zbMATHMathSciNetGoogle Scholar
  32. Brown, B. M. (1971). Martingale central limit theorems, Ann. Math. Stat. 42, 59–66.zbMATHGoogle Scholar
  33. Burton, R., Dabrowski, A. and Dehling, H. (1985) (personal communication).Google Scholar
  34. Chiang, I. S. and Hsiung, C. A. (1983). Strassen’s invariance principle for random subsequences, Z.W. 64, 401–409.Google Scholar
  35. Csaki, E. and Révész, P. (1983). Strong invariance for local time, Z.W. 62, 263–278.zbMATHGoogle Scholar
  36. Csörgö, M. (1983). Quantile processes with statistical applications, SIAM, Philadelphia, PA.Google Scholar
  37. Csörgö, M. and Révész, P. (1975a,). A new method to prove Strassen type laws of invariance principle, I and II. Z.W. 31, 255–260 and Z.W. 31, 261–269.Google Scholar
  38. Csörgq, M. and Révész, P. (1975). Some notes on the empirical distribution function and the quantile process, Coll. Math. Soc. J. Bolyai 11, Limit theorems in probability theory (P. Révész, Ed. ).Google Scholar
  39. Csörgö, M. and Révész, P. (1978). Strong approximations of the quantile process, Ann. Statist. 6, 882–894.zbMATHMathSciNetGoogle Scholar
  40. Csörgó. M. and Revesz, P. (1981). Strong approximations in probability and statistics, Academic Press, New York, San Francisco, London.Google Scholar
  41. Csörgó, S. (1981). Limit behaviour of the empirical characteristic function, A.P. 9, 130–144.Google Scholar
  42. Csörgó, S. and Hall, P. (1982). Upper and lower classes for triangular arrays, Z.W. 61, 207–222.Google Scholar
  43. Csörgó, S., Horvath, L. and Serfling, R. (1983). An approximation for the empirical process of U-statistic structure, Technical Report, Johns Hopkins Univ.Google Scholar
  44. Dabrowski, A. R. (1982). Invariance principles for random processes generated by extrema and partial sums of random variables, Ph.D. thesis, Univ. of Illinois, Urbana.Google Scholar
  45. Dabrowski, A. R. (1982). A note on a theorem of Berkes and Philipp for dependent sequences, Statist. Prob. Letters 1, 53–55.zbMATHMathSciNetGoogle Scholar
  46. Dabrowski, A. R. (1984). A functional law of the iterated logarithm for associated sequences, preprint.Google Scholar
  47. Dabrowski, A., Dehling, H. and Philipp, W. (1984). An almost sure invariance principle for triangular arrays of Banach space valued random variables, Z.W. 65, 483–491.zbMATHMathSciNetGoogle Scholar
  48. Davydov, Yu. A. (1970). The invariance principle for stationary processes. Theor. Prob. Appl. 15, 487–498.Google Scholar
  49. deAcosta, A. (1982). An invariance principle in probability for triangular arrays of B-valued random vectors, A.P. 10, 346–373.MathSciNetGoogle Scholar
  50. Deheuvels, P. (1981). The strong approximation of extremal processes, Z.W. 58, 1–6.zbMATHMathSciNetGoogle Scholar
  51. Deheuvels, P. (1983). The strong approximation of extremal processes II, Z.W. 62, 7–15.zbMATHMathSciNetGoogle Scholar
  52. Deheuvels, P. (1983). The complete characterization of the upper and lower class of the record and inter-record times of an i.i.d. sequence, Z.W. 62, 1–6.zbMATHMathSciNetGoogle Scholar
  53. Dehling, H. (1983). A note on a theorem of Berkes and Philipp, Z.W. 62, 39–43.zbMATHMathSciNetGoogle Scholar
  54. Dehling, H. (1983). Limit theorems for sums of weakly dependent Banach space valued random variables, Z.W. 63, 393–432.zbMATHMathSciNetGoogle Scholar
  55. Dehling, H. (1985). Almost sure approximations for U-statistics, this volume.Google Scholar
  56. Dehling, H., Denker, M. and Philipp, W. (1984). Versik processes and very weak Bernoulli processes with summable rates are independent, Proc. AMS, 61, 618–624.MathSciNetGoogle Scholar
  57. Dehling, H., Denker, M. and Philipp, W. (1984). Invariance principles for von Mises and U-statistics, Z.W. 67, 139–167.zbMATHMathSciNetGoogle Scholar
  58. Dehling, H., Denker, M. and Philipp, W. (1985). A bounded law of the iterated logarithm for Hilbert space valued martingales and its application to U-statistics, Z.W.Google Scholar
  59. Dehling, H., Denker, M. and Philipp, W. (1985). The almost sure invariance principle for the empirical process of U-statistic structure, preprint.Google Scholar
  60. Dehling, H. and Philipp, W. (1982). Almost sure invariance principles for weakly dependent vector-valued random variables, A.P. 10, 689–701.zbMATHMathSciNetGoogle Scholar
  61. Denker, M. (1982) (personal communication) (An ASIP for emp. d.f. of strongly mixing vectors).Google Scholar
  62. Denker, M. and Keller, G. (1983). U-statistics and v. Mises’ statistics for weakly dependent processes, Z.W. 64, 505–522.zbMATHMathSciNetGoogle Scholar
  63. Denker, M. and Philipp, W. (1984). Approximation by Brownian motion for Gibbs measures and flows under a function, Ergod. Th. and Dynam. Syst. 4, 541–552zbMATHMathSciNetGoogle Scholar
  64. Deo, Ch. M. (1973). A note on empirical processes of strong mixing sequences, A.P. 1, 870–875.zbMATHMathSciNetGoogle Scholar
  65. Dhompongsa, S. (1981). Limit theorems for weakly dependent random vectors, Ph.D. thesis, Univ. of Illinois, Urbana.Google Scholar
  66. Dhompongsa, S. (1984). A note on the almost sure approximation of empirical processes of weakly dependent random vectors, Yokohama Math. J. 32, 113–121.zbMATHMathSciNetGoogle Scholar
  67. Donsker, M. (1951). An invariance principle for certain probability limit theorems, Memoirs AMS, 6.Google Scholar
  68. Donsker, M. (1952). Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Stat. 23, 277–283.zbMATHMathSciNetGoogle Scholar
  69. Dudley, R. M. (1968). Distances of probability measures and random variables, Ann. Math. Stat. 39, 1563–1572.zbMATHMathSciNetGoogle Scholar
  70. Dudley, R. M. (1978). Central limit theorems for empirical measures, A.P. 6, 899–929, Correction A.P. 7, 909–911 (1979).Google Scholar
  71. Dudley, R. M. (1984). A course on empirical processes, Lecture Notes in Math.Google Scholar
  72. Dudley, R. M. and Philipp, W. (1983). Invariance principles for sums of Banach space valued random elements and empirical processes, Z.W. 62, 509–552.zbMATHMathSciNetGoogle Scholar
  73. Eberlein, E. (1979). An invariance principle for lattices of dependent random variables, Z.W. 50, 119–133.zbMATHMathSciNetGoogle Scholar
  74. Eberlein, E. (1983). Strong approximation of very weak Bernoulli processes, Z.W. 62, 17–37.zbMATHMathSciNetGoogle Scholar
  75. Eberlein, E. (1985). On strong invariance principles under dependence assumptions, A.P. to appear.Google Scholar
  76. Einmahl, U. (1984). Starke Approximationen von Partialsummen unabhängiger Zufallsvektoren, Diss. Univ. Köln.Google Scholar
  77. Erdös, P. and Kac, M. (1946). On certain limit theorems of the theory of probability, Bull. AMS, 52, 292–302.zbMATHGoogle Scholar
  78. Erdös, P. and Kac, M. (1947). On the number of positive sums of independent random variables, Bull. AMS, 53, 1011–1020.zbMATHGoogle Scholar
  79. Fisher, E. (1984). An almost sure invariance principle for random variables in the domain of attraction to a stable law, Z.W. 67, 461–471.zbMATHGoogle Scholar
  80. Freedman, D. (1971). Brownian motion and diffusion, Holden-Day, San Francisco.zbMATHGoogle Scholar
  81. Gaenssler, P. (1984). Empirical processes, IMS Lecture Notes, Monograph Series 3.Google Scholar
  82. Gaenssler, P. and Haeusler, E. (1985). On martingale central limit theory, this volume.Google Scholar
  83. Gaenssler, P. and Stute, W. (1979). Empirical processes: A survey of results for independent and identically distributed random variables, A.P. 7, 193–243.zbMATHGoogle Scholar
  84. Gins, E. and Zinn, J. (1984). Some limit theorems for empirical processes, A.P. 12, 929–989.Google Scholar
  85. Goldie, Ch. M. and Morrow, G. J. (1985). Central limit questions for random fields, this volume.Google Scholar
  86. Hall, P. (1979). On the invariance principle for U-statistics, Stochastic Proc. Appl. 9, 163–174.zbMATHGoogle Scholar
  87. Hall, P. and Heyde, C. C. (1980). Martingale limit theory and its applications, Academic Press, New York.Google Scholar
  88. Heath, D. (1977). Interpolation of martingales, A.P. 5, 804–806.zbMATHMathSciNetGoogle Scholar
  89. Herrndorf, N. (1983). The invariance principle for 0-mixing sequences, Z.W. 63, 97–109.zbMATHMathSciNetGoogle Scholar
  90. Herrndorf, N. (1983). Strongly mixing sequences not satisfying the central limit theorem, A.P. 11, 809–813.zbMATHMathSciNetGoogle Scholar
  91. Herrndorf, N. (1984). A functional central limit theorem for weakly dependent sequences of random variables, A.P. 12, 141–153.zbMATHMathSciNetGoogle Scholar
  92. Herrndorf, N. (1985). A functional central limit theorem for strongly mixing sequences of random variables, Z.W.Google Scholar
  93. Heyde, C. C. and Scott, D. J. (1973). Invariance principles for the law of the iterated logarithm for martingales and processes with stationary increments, A.P. 1, 428–436.zbMATHMathSciNetGoogle Scholar
  94. Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution, Ann. Math. Stat. 19, 293–325.zbMATHMathSciNetGoogle Scholar
  95. Hofbauer, F. and Keller, G. (1982). Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Zeitschrift, 180, 119–140.zbMATHMathSciNetGoogle Scholar
  96. Horvath, L. (1984). Strong approximation of extended renewal processes, A.P. 12, 1149–1166.zbMATHGoogle Scholar
  97. Huggins, R. M. (1985). On functional laws of the iterated logarithm, Z.W.Google Scholar
  98. Huggins, R. M. (1985). A strong invariance principle for reverse martingales, Acta Math. Acad. Sci. Hungar. 46Google Scholar
  99. Ibragimov, I. A. (1962). Some limit theorems for stationary processes, Theor. Prob. Appl. 7, 349–382.Google Scholar
  100. Ibragimov, I. A. (1975). A note on the central limit theorem for dependent random variables, Theor. Prob. Appl. 20, 135–141.zbMATHGoogle Scholar
  101. Jain, N. C. (1982). A Donsker-Varadhan type of invariance principle, Z.W. 59, 117–138.zbMATHGoogle Scholar
  102. Jain, N. C., Jogdeo, K. and Stout, W. (1975). Upper and lower functions for martingales and mixing processes, A.P. 3, 119–145.zbMATHMathSciNetGoogle Scholar
  103. Jain, N. C. and Pruitt, W. E. (1984). An invariance principle for the local time of a recurrent random walk, Z.W. 66, 141–156.zbMATHMathSciNetGoogle Scholar
  104. Kaufman, R. and Philipp, W. (1978). A uniform law of the iterated logarithm for classes of functions, A.P. 6, 930–952.zbMATHMathSciNetGoogle Scholar
  105. Kiefer, J. (1972). Skorohod embedding of multivariate r.v.’s and the sample df, Z.W. 24, 1–35.zbMATHGoogle Scholar
  106. Knight, F. B. (1971). A reduction of continuous square-integrable martingales to Brownian motion, Lecture Notes in Math. 190, 19–31.Google Scholar
  107. Komlós, J., Major, P. and Tusnâdy, G. (1975, 1976 ). An approximation of partial sums of independent RV’s and the sample DF. I and II, Z.W. 32, 111–131 and Z.W. 34, 33–58.zbMATHGoogle Scholar
  108. Kuelbs, J. and Philipp, W. (1980). Almost sure invariance principles for partial sums of mixing B-valued random variables, A.P. 8, 1003–1036.zbMATHMathSciNetGoogle Scholar
  109. Kunita, H. and Watanabe, S. (1967). On square integrable martingales, Nagoya Math. J. 30, 209–245.zbMATHMathSciNetGoogle Scholar
  110. Lamperti, J. (1964). On extreme order statistics, Ann. Math. Stat. 35, 1726–1737.zbMATHMathSciNetGoogle Scholar
  111. Leadbetter, M. R., Lindgren, G. and Rootzen, H. (1983). Extremes and related properties of random sequences and processes, Springer Verlag, New York, Heidelberg, Berlin.Google Scholar
  112. Major, P. (1976). Approximation of partial sums of i.i.d. r.v.s. when the summands have only two moments, Z.W. 35, 221–229.zbMATHMathSciNetGoogle Scholar
  113. Major, P. (1976). The approximation of partial sums of independent r.v.s. Z.W. 35, 213–220.zbMATHMathSciNetGoogle Scholar
  114. Major, P. (1977). A note on Kolmogorov’s law of the iterated logarithm, Studia Scient. Math. Hungar. 12, 161–167.zbMATHMathSciNetGoogle Scholar
  115. Major, P. (1979). An improvement on Strassen’s invariance principle, A.P. 7, 55–61.zbMATHMathSciNetGoogle Scholar
  116. Marcus, M. B. and Philipp, W. (1982). Almost sure invariance principles for sums of B-valued random variables with applications to random Fourier series and the empirical characteristic process, Trans. AMS, 269, 67–90.zbMATHMathSciNetGoogle Scholar
  117. Mark, G. (1982). Loglog-Invarianzprinzipien für Prozesse der stochastischen Approximation, Mitteilungen Math. Seminar Giessen, 153.zbMATHGoogle Scholar
  118. McLeish, D. L. (1975). Invariance principles for dependent random Z.W. variables, 32, 165–178.zbMATHMathSciNetGoogle Scholar
  119. McLeish, D. L. (1977). On the invariance principle for nonmixingales, stationary A.P. 5, 616–621.zbMATHMathSciNetGoogle Scholar
  120. Rao, M. S. (1975). Weak convergence of empirical processes relative to d under strong. 3, 979–991.zbMATHGoogle Scholar
  121. Mijnher, J. (1980). A strong approximation of partial sums of i.i.d. random variables with infinite variance, Z.W. 52, 1–7.Google Scholar
  122. Mijnher, J. (1983). Strong approximations of partial sums of i.i.d. random variables in the domain of attraction of a symmetric stable distribution, Trans. Ninth Prague Conf. Information Theor., Statist. Decision Fcts, Random Proc. Prague 1982, 83–89.Google Scholar
  123. Millar, P. W. (1968). Martingale integrals, Trans. AMS, 133, 145–166.zbMATHMathSciNetGoogle Scholar
  124. Morrow, G. J. (1980). Invariance principles for Gaussian sequences, Z.W. 52, 115–126.zbMATHMathSciNetGoogle Scholar
  125. Morrow, G. J. and Philipp. W. (1982). An almost sure invariance principle for Hilbert space valued martingales, Trans. AMS, 273, 231–251.zbMATHMathSciNetGoogle Scholar
  126. Morrow, G. J. and Philipp, W. (1984). Invariance principles for partial sum processes and empirical processes indexed by sets, preprint.Google Scholar
  127. Muller, C. (1983). Strassen’s law for local time, Z.W. 63, 29–41.Google Scholar
  128. Neuhaus, G. (1977). Functional limit theorems for U-statistics in the degenerate case, J. Multivariate Anal. 7, 424–439.zbMATHMathSciNetGoogle Scholar
  129. Newman, C. M. and Wright, A. L. (1981). An invariance principle for certain dependent sequences, A.P. 9, 671–675.zbMATHMathSciNetGoogle Scholar
  130. Oodaira, H. and Yoshihara, K. I. (1972). Functional central limit theorems for strictly stationary processes satisfying the strong mixing condition, Kodai Math. Sem. Rep. 24, 259–269.zbMATHMathSciNetGoogle Scholar
  131. Peligrad, M. (1985). An invariance principle for 0-mixing sequences, A.P.Google Scholar
  132. Peligrad, M. (1985). Recent advances in the central limit theorem and its weak invariance principle for mixing sequences of random variables (A survey), this volume.Google Scholar
  133. Philipp, W. (1977). A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables, A.P. 5, 319–350.zbMATHMathSciNetGoogle Scholar
  134. Philipp, W. (1979). Almost sure invariance principles for sums of B-valued random variables, Probability in Banach Spaces (Proc. Conf. Oberwolfach 1978), Lecture Notes in Math. 709, 171–193, Springer, New York, Heidelberg, Berlin.Google Scholar
  135. Philipp, W. (1980). Weak and LP-invariance principles for sums of B-valued random variables, A.P. 8, 68–82, Correction, ibid. to appear.Google Scholar
  136. Philipp, W. (1984). Invariance principles for sums of mixing random elements and the multivariate empirical process, Coll. Math. Soc. J. Bolyai 36. Limit Theorems in Prob. and Statist. Verzpreni (Hungary), 1982.Google Scholar
  137. Philipp, W. (1984). Discussion of a paper by Gins and Zinn, A.P. 12, 993–995.Google Scholar
  138. Philipp, W. and Stout, W. (1975). Almost sure invariance principles for partial sums of weakly dependent random vectors, Memoirs AMS, 161.Google Scholar
  139. Philipp, W. and Stout, W. (1985). Invariance principles for martingales and sums of independent random variables, Math. Zeitschrift.Google Scholar
  140. Philipp, W. and Pinzur, L. (1980). Almost sure approximation theorems for the multivariate empirical process, Z.W. 54, 1–13.zbMATHMathSciNetGoogle Scholar
  141. Pollard, D. (1984). Convergence of stochastic processes, Springer Verlag, New York.zbMATHGoogle Scholar
  142. Prohorov, Yu. V. (1956). The convergence of random processes and limit theorems in probability theory, Theor. Prob. Appl. 1, 157–214.MathSciNetGoogle Scholar
  143. Qiman, S. (1985). Strong approximations of lacunary trigonometric series with weights, preprint.Google Scholar
  144. Qiman, S. (1985). An almost sure invariance principle for partial sums of Gaussian sequences, preprint.Google Scholar
  145. Qiman, S. and Chuanrong, L. (1985). Strong approximations for partial sums of weakly dependent random sequences, preprint.Google Scholar
  146. Resnick, S. I. (1975). Weak convergence of extremal processes, A.P. 3, 951–960.zbMATHMathSciNetGoogle Scholar
  147. Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition, Proc. Natl. Acad. Sci. USA, 42, 43–47.zbMATHMathSciNetGoogle Scholar
  148. Samur, J. D. (1984). Convergence of sums of mixing triangular arrays of random vectors with stationary rows, A.P. 12, 390–426.zbMATHMathSciNetGoogle Scholar
  149. Samur, J. D. (1985). On the invariance principle for stationary 0-mixing triangular arrays with infinitely divisible limits, preprint.Google Scholar
  150. Schwarz, G. (1980). Finitely determined processesan indiscrete approach, J. Math. Anal. Appl. 76, 146–158.zbMATHMathSciNetGoogle Scholar
  151. Scott, D. J. and Huggins, R. M. (1983). On the embedding of processes in Brownian motion and the law of the iterated logarithm for reverse martingales, Bull. Austral. Math. Soc. 27, 443–459.zbMATHMathSciNetGoogle Scholar
  152. Sen, P. K. (1974). Almost sure behaviour of U-statistics and v. Mises differentiable statistical functions, Ann. Statist. 2, 387–395.zbMATHMathSciNetGoogle Scholar
  153. Serfling, R. (1984). Generalized L-, M- and R-statistics, Ann. Statist. 12, 76–86.zbMATHMathSciNetGoogle Scholar
  154. Silverman, B. W. (1983). Convergence of a class of empirical distribution functions of dependent random variables, A.P. 11, 745–751.zbMATHGoogle Scholar
  155. Simon, G. and Stout, W. (1978). A weak invariance principle with applications to domains of attraction, A.P. 6, 294–315.Google Scholar
  156. Skorohod, A. V. (1957). Limit theorems for stochastic processes with independent increments, Theor. Prob. Appl. 2, 138–171.Google Scholar
  157. Skorohod, A. V. (1965). Studies in the theory of random processes, Addison-Wesley, Reading, MA.Google Scholar
  158. Stout, W. F. (1979). Almost sure invariance principles when EX1 = co, Z.W. 44, 23–32.MathSciNetGoogle Scholar
  159. Strassen, V. (1964). An almost sure invariance principle for the law of the iterated logarithm, Z.W. 3, 211–226.zbMATHMathSciNetGoogle Scholar
  160. Strassen, V. (1965). The existence of probability measures with given marginals, Ann. Math. Statist. 36, 423–439.zbMATHMathSciNetGoogle Scholar
  161. Strassen, V. (1967). Almost sure behaviour of sums of independent random variables and martingales, Proc. Fifth Berkeley Symp. Math. Stat. Prob. Vol. II, Part 1, 315–343.MathSciNetGoogle Scholar
  162. Strittmatter, W. (1982). Metriken für stochastische Prozesse und schwache Abhängigkeit, Diplomarbeit, Univ. Freiburg im Breisgau.Google Scholar
  163. Takahashi, S. (1979). Almost sure invariance principles for lacunary trigonometric series, Tohoku Math. J. (2), 31, 439–451.zbMATHGoogle Scholar
  164. Takahashi, S. (1980). The functional central limit theorem for lacunary trigonometric series, Acta Math. Acad. Sci. Hungar. 35, 185–1 92.Google Scholar
  165. Taqqu, M. and Czado, C. (1985). A survey of functional laws of the iterated logarithm for self-similar processes, Stochastic Models 1, 77–115.MathSciNetGoogle Scholar
  166. Wacker, U. (1983). Grenzwertsätze für nichtadditive, schwachabhängige Prozesse, Diss. Univ. Göttingen.Google Scholar
  167. Walk, H. (1977). An invariance principle for the Robbins-Monroe process in a Hilbert space, Z.W. 39, 135–150.zbMATHMathSciNetGoogle Scholar
  168. Walk, H. (1978). Martingales and the Robbins-Monroe procedure in D[0,1], J. Multivariate Anal. 8, 430–452.zbMATHMathSciNetGoogle Scholar
  169. Walk, H. (1980). A functional central limit theorem for martingales in C(K) and its application to sequential estimates, J. Reine Angew. Math. 314, 117–135.zbMATHMathSciNetGoogle Scholar
  170. Yokoyama, R. (1980). A note on weak convergence of empirical processes for 0-mixing random variables, Yokohama Math. J. 28, 37–40.zbMATHMathSciNetGoogle Scholar
  171. Yoshihara, K. (1976). Limiting behaviour of U-statistics for stationary absolutely regular processes, Z.W. 35, 237–352.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Walter Philipp
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations