Ejection, Filling and Diastasis during Transluminal Occlusion in Man: Consideration on Global and Regional Left Ventricular Function

  • Patrick W. Serruys
  • William Wijns
  • Federico Piscione
  • Pim de Feyter
  • Paul G. Hugenholtz


An extensive literature exists that describes the acute changes in hemodynamics and left ventricular function following coronary occlusion in animals [1–4]. Much less, however, is known in humans. Extrapolating results from animals to humans is potentially difficult, because in humans preexisting atherosclerotic coronary disease and a unique distribution of collateral circulation [5–7] may influence the findings. Until recently, measurement of left ventricular geometry and hemodynamics early after an abrupt occlusion of a major coronary artery has not been feasible in humans. Percutaneous transluminal coronary angioplasty (PTCA), however, now provides a unique opportunity to study the time course of these variables during the transient interruption of coronary flow in the balloon occlusion sequence in patients with single-vessel disease and without angiographically demonstrable collateral circulation [8–10].


Coronary Occlusion Left Atrial Pressure Peak Filling Rate Wall Displacement Ischemic Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pagani M, Vatner S, Brig H, Braunwald E (1978). Initial myocardial adjustments to brief periods of ischemia and reperfusion in the conscious dog. Circ Res 43: 83–91.PubMedGoogle Scholar
  2. 2.
    Kumada T, Karliner JS, Pouleur H, et al (1979). Effects of coronary occlusion on early ventricular diastolic events in conscious dogs. Am J Physiol 237: H542 - H549.PubMedGoogle Scholar
  3. 3.
    Gaasch WH, Bernard SA (1977). The effects of acute changes in coronary blood flow on left ventricular end-diastolic wall thickness: An echo-cardiographic study. Circulation 56: 593–597.PubMedGoogle Scholar
  4. 4.
    Forrester JS, Wyatt HL, de Luz PL, et al (1976). Functional significance of regional ischemic contraction abnormalities. Circulation; 54: 64–70.PubMedGoogle Scholar
  5. 5.
    Rentrop KP, Cohen M, Blanke H, Phillips RA (1985). Changes in collateral filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects, J Am Coll Cardiol 5: 587–592.PubMedCrossRefGoogle Scholar
  6. 6.
    Probst P, Zangl W, Pachinger O (1985). Relation of coronary arterial occlusion pressure during percutaneous transluminal coronary angioplasty to presence of collaterals. Am J Cardiol 55: 1264–1269.PubMedCrossRefGoogle Scholar
  7. 7.
    Meier B, Luethy P (1984). Coronary wedge pressure as predictor of recruitable collateral, arteries. Circulation 70 (suppl II): 266.Google Scholar
  8. 8.
    Das SK, Serruys PW, vd Brand M, et al (1983). Acute echocardiographic changes during percutaneous coronary angioplasty and their relationship to coronary blood flow. J Cardiovasc Ultrasonogr 2: 269–271.Google Scholar
  9. 9.
    Serruys PW, vd Brand M, Brower RW, Hugenholtz PG (1983). Regional cardioplegia and cardioprotection during transluminal angioplasty, which role for nifedipine? Eur Heart J 4: 115–21.PubMedGoogle Scholar
  10. 10.
    Sigwart U, Grbic M, Payot M, et al (1985). Ischemic events during coronary artery balloon obstruction. In Rutishauser W, Roskumm H (eds): Silent Myocardial Ischemia. Roskamm; Berlin: Springer Verlag, pp 29–36.Google Scholar
  11. 11.
    Meester GT, Bernard N, Zeelenberg C, et al (1975). A computer system for real time analysis of cardiac catheterization data. Cathet Cardiovasc Diagn 1: 112–23.CrossRefGoogle Scholar
  12. 12.
    Meester CT, Zeelenberg C, Bernard N, Gorier S (1974). Beat to beat analysis of cardiac catheterization data. In Computers in Cardiology. Los Angeles: IEEE Computer Society, pp 63–65.Google Scholar
  13. 13.
    Brower RW, Meij S, Serruys PW (1983). A model of asynchronous left ventricular relaxation predicting the bi-exponential pressure decay. Cardiovasc Res 17: 482–488.PubMedCrossRefGoogle Scholar
  14. 14.
    Fioretti P, Brower RW, Meester GT, Serruys PW (1980). Interaction of left ventricular relaxation and filling during early diastole in human subjects. Am J Cardiol 46: 197–203.PubMedCrossRefGoogle Scholar
  15. 15.
    Slager CJ, Reiber JHC, Schuurbiers JCH, Meester GT (1978). Contouromat-A hardwired left ventricular angio processing system: Design and application. Comp Biomed Res 11: 431–502.Google Scholar
  16. 16.
    Slager CJ, Hooghoudt TEH, Reiber JCH, et al (1980). Left ventricular contour segmentation from anatomical landmark trajectories and its application to wall motion analysis. In Computers in Cardiology. Los Angeles: IEEE Computer Society, pp 347–350.Google Scholar
  17. 17.
    Hooghoudt TEH, Slager CJ, Reiber JHC, et al (1980). “Regional contribution to global ejection fraction” used to assess the applicability of a new wall motion model to the detection of regional wall motion in patients with asynergy. In Computers in Cardiology. Los Angeles: IEEE Computer Society, pp 253–256.Google Scholar
  18. 18.
    Slager CJ, Hooghoudt TEH, Serruys PW, et al (1982). Automated quantification of left ventricular angiograms. In Short MD, et al (eds): Physical techniques in Cardiological Imaging. Bristol, Eng. A Hilger Ltd, pp 163–172.Google Scholar
  19. 19.
    Hess OM, Grimm J, Krayenbuehl HP (1979). Diastolic simple elastic and viscoelastic properties of the left ventricle in man. Circulation 59: 1178–1187.PubMedGoogle Scholar
  20. 20.
    Theroux P, Franklin D, Ross J Jr, Kemper WS (1974). Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circ Res 35: 896–908.PubMedGoogle Scholar
  21. 21.
    Sasayama S, Nonogi H, Migazaki S, et al (1985). Changes in diastolic properties of the regional myocardium during pacing-induced ischemia in human subjects. J Am Coll Cardiol 5: 599–606.PubMedCrossRefGoogle Scholar
  22. 22.
    Hess OM, Koch R, Bamert C, Krayenbuehl HP (1980). Regional wall stiffness during acute myocardial ischemia in the canine left ventricle. Eur Heart J 1: 435–443.PubMedGoogle Scholar
  23. 23.
    Tyberg JV, Parmley MW, Sonnenblick EH (1969). In vitro studies of myocardial asynchrony and regional hypoxia. Circulation 25: 569–579.Google Scholar
  24. 24.
    Theroux P, Ross J Jr, Franklin D, et al (1977). Regional myocardial infarction in the unanesthetized dog. Circ Res 40: 158–165.PubMedGoogle Scholar
  25. 25.
    Theroux P, Ross J Jr, Franklin D, et al (1976). Regional myocardial function in the conscious dog during acute coronary occlusion and responses to morphine, propranolol, nitroglycerine and lidocaine. Circulation 53: 302–314.PubMedGoogle Scholar
  26. 26.
    Clayton PD, Bulawa WF, Klausner SC, et al (1979). The characteristic sequence for the onset of contraction in the normal human left ventricle. Circulation 59: 671–679.PubMedGoogle Scholar
  27. 27.
    Klausner SC, Blair TJ, Bulawa WF, et al (1982). Quantitative analysis of segmental wall motion throughout systole and diastole in the normal human left ventricle. Circulation 65: 580–590.PubMedCrossRefGoogle Scholar
  28. 28.
    Holman LB, Wynne J, Idoine J, Neill J (1980). Disruption in the temporal sequence of regional ventricular contraction. I. Characteristics and incidence in coronary artery disease. Circulation 61: 1075–1083.PubMedGoogle Scholar
  29. 29.
    Ferro G, Piscione F, Carella G, et al (1984). Systolic and diastolic time intervals during spontaneous angina. Clin Cardiol 7: 588–592.PubMedCrossRefGoogle Scholar
  30. 30.
    Yellin EL, Yoran C, Sonnenblick EH, Frater RWM (1980). The relation between left ventricular relaxation and early diastolic filling in the intact dog heart. Eur Heart J 1 (suppl B): 179–180.Google Scholar
  31. 31.
    Yellin EL, Peskin C, Yoran C, et al (1981). Mechanism of mitral valve motion during diastole. Am J Physiol 214: H389 - H400.Google Scholar
  32. 32.
    Yamagishi T, Ozaki M, Kumada T, et al (1984). Asynchronous left ventricular diastolic filling in patients with isolated disease of the left anterior descending coronary artery: assessment with radionuclide ventriculography. Circulation 69: 933–942.PubMedCrossRefGoogle Scholar
  33. 33.
    Bonow RO, Vitale DF, Bacharach SL, et al (1985). Asynchronous left ventricular regional function and impaired global diastolic filling in patients with coronary artery disease: reversal after coronary angioplasty Circulation 71: 297–307.PubMedCrossRefGoogle Scholar
  34. 34.
    Brutsaert DL, Housemans PR, Goethals MA (1980). Dual control of relaxation: Its role in the ventricular function in the mammalian heart. Circ Res 47: 637–652.PubMedGoogle Scholar
  35. 35.
    Brutsaert DL, Rademakers FE, Sys SV (1984). Triple control of relaxation: Implications in cardiac diseases. Circulation 69: 190–196.PubMedCrossRefGoogle Scholar
  36. 36.
    Paulus WJ, Grossman W, Serizawa T, et al (1985). Different effects of two types of ischemia on myocardial systolic and diastolic functions. Am J Physiol 1985; 248: H719 - H728.Google Scholar
  37. 37.
    Hess OM, Osakada G, Lavelle JF, et al (1983). Diastolic myocardial wall stiffness and ventricular relaxation during partial and complete coronary occlusion in the conscious dog. Circ Res 52: 387–400.PubMedGoogle Scholar
  38. 38.
    Grossman W, Serizawa T, Carabello BA (1980). Studies on the mechanism of altered left ventricular diastolic pressure-volume relations during ischemia. Eur Heart J 1 (suppl): 141–147.Google Scholar
  39. 39.
    Bourdillon PD, Lorell BH, Mirsky I, et al (1983). Increased regional myocardial stiffness of the left ventricle during pacing-induced angina in man. Circulation 67: 316–323.PubMedCrossRefGoogle Scholar
  40. 40.
    Shirato K, Shabetai R, Bhargava V, et al (1978). Alteration of the left ventricular diastolic pressure segment length relation produced by the pericardium: Effects of cardiac distension and afterload reduction in conscious dogs. Circulation 57: 1191–1198.PubMedGoogle Scholar
  41. 41.
    Serizawa T, Carabello BA, Grossman W (1980). Effect of pacing-induced ischemia on left ventricular diastolic pressure-volume relations in dogs with coronary stenoses. Circ Res 46: 430–439.PubMedGoogle Scholar
  42. 42.
    Glantz SA, Parmley WW (1978). Factors which affect the diastolic pressure-volume curve. Circ Res 42: 171–180.PubMedGoogle Scholar
  43. 43.
    Serruys PW, van den Brand M, Mey S, et al (1984). Left ventricular performance, regional blood flow, wall motion and lactate metabolism during transluminal angioplasty. Circulation 70: 25–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Wahr DW, Ports TA, Botvinick EH, et al (1985). The effects of coronary angioplasty and reperfusion on distribution of myocardial flow. Circulation 72: 334–343.PubMedCrossRefGoogle Scholar
  45. 45.
    Jaski BE, Serruys PW (1985). Epicardial wall motion and left ventricular function during coronary graft angioplasty in humans. J Am Coll Cardiol 6: 695–700.PubMedCrossRefGoogle Scholar
  46. 46.
    Distante A, Rovai D, Picano E, et al (1984). Transient changes in left ventricular mechanics during attacks of Prinzmetal’s angina. Am Heart J 107: 465–472.PubMedCrossRefGoogle Scholar
  47. 47.
    Nayler WG, Williams A (1978). Relaxation in heart muscle: Some morphological and biochemical considerations. Eur J Cardiol 7 (suppl): 35–50.PubMedGoogle Scholar
  48. 48.
    Wiegner AW, Allen GJ, Bing OHL (1978). Weak and strong myocardium in series: Implications for segmental dysfunction. Am J Physiol 235: H776 - H783.PubMedGoogle Scholar
  49. 49.
    Carroll JD, Hess OM, Hirzel HO, Krayenbuehl HP (1983). Dynamics of lèft ventricular filling at rest and during exercise. Circulation 68: 5967.CrossRefGoogle Scholar
  50. 50.
    Rankin JS, Arentzen CE, McHale PA, et al (1977). Viscoelastic properties of the diastolic left ventricle in the conscious dog. Circ Res 41: 37–45.PubMedGoogle Scholar
  51. 51.
    Pouleur H, Karliner JS, Le Winter MM, Covell JW (1979). Diastolic viscous properties of the intact canine left ventricle. Circ Res 45: 410–419.PubMedGoogle Scholar
  52. 52.
    Heijndrickx GR, Millard RW, McRitchie RJ, et al (1975). Regional myocardial function and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56: 978–985.CrossRefGoogle Scholar
  53. 53.
    Gibson DJ, Prewitt TA, Brown DT (1976). Analysis of left ventricular wall movement during isovolumic relaxation and its relation to coronary artery disease. Br Heart J 38: 1010–1019.PubMedCrossRefGoogle Scholar
  54. 54.
    Sasayama S, Nonogi H, Fujita M, et al (1984). Analysis of asynchronous wall motion by regional pressure length loops in patients with coronary artery disease. J Am Coll Cardiol 1984; 4: 256–267.Google Scholar
  55. 55.
    Gaasch WH, Blaustein AS, Bing OHL (1985). Asynchronous (segmental early) relaxation of the left ventricle. J Am Coll Cardiol 5: 891–897.PubMedCrossRefGoogle Scholar
  56. 56.
    Doorey AJ, Mehmel HC, Schwartz FX, Kübler W (1985). Amelioration by nitroglycerin of left ventricular ischemia induced by percutaneous transluminal coronary angioplasty: Assessment by hemodynamic variables and left ventriculography. J Am Coll Cardiol 6: 267–274.Google Scholar
  57. 57.
    McDonald FM, Fuchs M, Kreuzer J, et al (1985). Hemodynamic and antiarhythmic protective effects of intracoronary perfusion during percutaneous transluminal coronary angioplasty. Eur Heart J 6: 284–293.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing 1987

Authors and Affiliations

  • Patrick W. Serruys
  • William Wijns
  • Federico Piscione
  • Pim de Feyter
  • Paul G. Hugenholtz

There are no affiliations available

Personalised recommendations