Advertisement

Biophysical Aspects of Radiation Carcinogenesis

  • Albrecht M. Kellerer
  • Harald H. Rossi
Chapter
Part of the Cancer, A Comprehensive Treatise book series (C)

Abstract

Although radiation carcinogenesis was recognized some 75 years ago, we still know little about the mechanisms involved. Because of its profoundly important theoretical and practical aspects, the subject has been very extensively studied, but most of the information obtained has been of a phenomenological nature. It seems unlikely that a complete step-by-step description of radiogenic cancer induction will be possible in the foreseeable future. Merely the first purely physical process—that of energy deposition by charged particles—is highly com­plex and difficult to quantitate. There is every reason to believe that the ensuing physicochemical, biochemical, intracellular, intercellular, and systemic processes are at least as complex and that many of them are unknown at this time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awa, A. A., 1975, Chromosome aberrations in somatic cells, J. Radiat. Res. Suppl. 16: 122–131.CrossRefGoogle Scholar
  2. Bach, R. L., and Caswell, R. S., 1968, Energy transfer to matter by neutrons, Radial. Res. 35: 1–25.CrossRefGoogle Scholar
  3. Bateman, J. L., Rossi, H. H., Kellerer, A. M., Robinson, C. V., and Bond, V. P., 1972, Dose dependence of fast neutron Rbe for lens opacification in mice, Radiat. Res. 51: 381–390.PubMedCrossRefGoogle Scholar
  4. Beebe, G., Kato, H., and Land, C. (eds.), 1977, Mortality Experience of Atomic Bomb Survivors 1950–1974: Life Span Study 8, Radiation Effects Research Foundation, Technical Report, pp. 1–77.Google Scholar
  5. Bigla, M. T., Lego, R., Ducatez, G., and Bourguignon, M., 1971, Formation de Chromosomes Dicentrique dans les Lymphocytes Humains Soumis in Vitro à un Flux de Rayonnement Mixte (Gamma, Neutrons), pp. 633–645, Iaea, Vienna.Google Scholar
  6. Bird, R. P., 1979, Biophysical studies with spatially correlated ions. 3. Cell survival studies using diatomic deuterium, Radiat. Res. 78: 210–233.PubMedCrossRefGoogle Scholar
  7. Bond, V. P., Cronkite, E. P., Lippincott, S. W., and Shellabarger, C. J., 1960, Studies on radiation induced mammary gland neoplasia in the rat, Radiat. Res. 12: 276–285.PubMedCrossRefGoogle Scholar
  8. Borek, C., 1979, Neoplastic transformation following split doses of x-rays, Br. J. Radiol. 50: 845–846.CrossRefGoogle Scholar
  9. Borek, C., and Hall, E. J., 1973, Transformation of mammalian cells in vitro by low doses of x-rays, Nature (London) 244: 450–453.CrossRefGoogle Scholar
  10. Borek, C., and Hall, E. J., 1974, Effect of split doses of x-rays on neoplastic transformation of single cells, Nature (London) 252: 499–501.CrossRefGoogle Scholar
  11. Borek, C., and Sachs, L., 1966, In vitro transformation by x-irradiation, Nature (London) 210: 276–278.Google Scholar
  12. Borek, C., Hall, E. J., and Rossi, H. H., 1978, Malignant transformation in cultured hamster embryo cells produced by X-rays, 430 keV monoenergetic neutrons, and heavy ions, Cancer Res. 38: 2997–3005.PubMedGoogle Scholar
  13. Brenot, J., Chemtob, M., Chmelevsky, D., Fache, P. Parmentier, N., Soucie, R., Bigla, M. T., Haag, J., Lego, R., Bourguignon, M., Courant, D., Dacher, J., and Ducatez, G., 1973, Aberrations chromosomiques et microdosimétrie, in: Proceedings of the IV Symposium of Microdosimetry, Verbania, Euratom, Brussels.Google Scholar
  14. Brewen, J. G., Preston, R. J., Jones, K. P., and Gosslee, D. D., 1973, Genetic hazards of ionizing radiations: Cytogenetic extrapolations from mouse to man, Mutat. Res. 17: 245–254.PubMedCrossRefGoogle Scholar
  15. Chmelevsky, D., Kellerer, A. M., Terrisol, M., and Patan, J. P., 1980, Proximity functions for electrons up to 10 keV, Radiat. Res. 84: 219–238.CrossRefGoogle Scholar
  16. Cole, A., 1967, Chromosome structure, in: Theoretical and Experimental Biophysics, Vol. I ( A. Cole, ed.), Dekker, New York.Google Scholar
  17. Colvett, R. D., and Rohrig, N., 1979, Biophysical studies with spatially correlated ions. 2. Multiple scattering, experimental facility, and dosimetry, Radiat. Res. 78: 192–209.PubMedCrossRefGoogle Scholar
  18. Dewey, W. C., Noel, J. S., and Dettor, C. M., 1972, Changes in radiosensitivity and dispersion of chromatin during the cell cycle of synchronous Chinese hamster cells, Radial. Res. 52: 373–394.CrossRefGoogle Scholar
  19. Hall, E. J., Rossi, H. H., Kellerer, A. M., Goodman, L. J., and Marino, S., 1973, Radio-biological studies with monoenergetic neutrons, Radiat. Res. 54: 431–443.PubMedCrossRefGoogle Scholar
  20. Icru, 1970, Report 16: Linear Energy Transfer, International Commission on Radiation Units and Measurements, Washington, D.C.Google Scholar
  21. Icru, 1971, Report 19: Radiation Quantities and Units, International Commission on Radiation Units and Measurements, Washington, D.C.Google Scholar
  22. Ishimaru, T., Hoshino, T., Ichimaru, M., Okada, H., Tomiyasu, T., and Tsuchimoto, T., 1971, Leukemia in atomic bomb survivors, Hiroshima and Nagasaki, 1 October 1950–30 September 1966, Radiat. Res. 45: 216–233.PubMedCrossRefGoogle Scholar
  23. Ishimaru, T., Otake, M., and Ichimaru, M. 1979, Dose response relationship of neutrons and y rays to leukemia incidence among atomic bomb survivors in Hiroshima and Nagasaki by type of leukemia, 1950–1971, Radiat. Res. 77: 377–394.PubMedCrossRefGoogle Scholar
  24. Jablon, S., 1979, Comments on “Leukemia Risk from Neutrons” by H. H. Rossi and C. W. Mays, Health Phys. 36: 205–206.PubMedGoogle Scholar
  25. Jones, T. D., 1977, Chord operators for cell-survival models and insult assessment to active bone marrow, Radiat. Res. 71: 269–283.PubMedCrossRefGoogle Scholar
  26. Kellerer, A. M., and Brenot, J., 1973, Nonparametric determinations of modifying factors in radiation action, Radiat. Res. 55: 28–39.CrossRefGoogle Scholar
  27. Kellerer, A. M., and Brenot, J., 1974, On the statistical evaluation of dose—response functions, Radiat. Environ. Biophys. 11: 1–13.PubMedCrossRefGoogle Scholar
  28. Kellerer, A. M., and Chmelevsky, D., 1975, Concepts of microdosimetry. I. Quantities, Radiat. Environ. Biophys. 12: 61–69.PubMedCrossRefGoogle Scholar
  29. Kellerer, A. M., and Hug, O., 1972, Theory of dose—effect relations, in: Encyclopedia of Medical Radiology, Vol. II/3, pp. 1–42, Springer, New York.Google Scholar
  30. Kellerer, A. M., and Rossi, H. H., 1972, The theory of dual radiation action, Curr. Top. Radiat. Res. 8: 85–158.Google Scholar
  31. Kellerer, A. M., Lam, Y. M., and Rossi, H. H., 1980, Biophysical studies with spatially correlated ions. IV. Analysis of cell survival data for diatomic deuterium, Radial. Res. 83: 511–528.CrossRefGoogle Scholar
  32. Kerr, G. D., 1978, Organ Dose Estimates for the Japanese Atomic Bomb Survivors, Oak Ridge National Laboratory Draft Technical Report 5436, Oak Ridge, Tennessee.Google Scholar
  33. Lea, D. E., 1946, Actions of Radiations on Living Cells, Cambridge University Press, Cambridge.Google Scholar
  34. Little, J. B., and Terzaghi, M., 1976, Oncogenic transformation in vitro after split dose x-irradiation, Int. J. Radial. Biol. 29: 583–587.CrossRefGoogle Scholar
  35. Miller, R., Hall, E. J., and Rossi, H. H., 1979, Oncogenic transformation of mammalian cells in vitro with split doses of x-rays, Proc. Natl. Acad. Sci. Usa 76: 5755–5758.PubMedCrossRefGoogle Scholar
  36. Mole, R. H., 1975, Ionizing radiation as a carcinogen, Br. J. Radiol. 48: 157.PubMedCrossRefGoogle Scholar
  37. Müller, W. A., Gosner, W., Hug, O., and Luz, A., 1978, Late effects after incorporation of the short lived a emitters 224Ra and 227Th in mice, Health Phys. 35: 33–56.PubMedCrossRefGoogle Scholar
  38. Rossi, H. H., 1964, Correlations of radiation quality and biological effect, Ann. N. Y. Acad. Sci. 114: 4–15.PubMedCrossRefGoogle Scholar
  39. Rossi, H. H., 1977, The effects of small doses of ionizing radiation: Fundamental biophysical characteristics, Radiat. Res. 71: 1–8.PubMedCrossRefGoogle Scholar
  40. Rossi, H. H., 1979, Biophysical studies with spatially correlated ions. 1. Background and theoretical considerations, Radial. Res. 78: 185–191.CrossRefGoogle Scholar
  41. Rossi, H. H., and Kellerer, A. M., 1972, Radiation carcinogenesis at low doses, Science 175: 200–202.PubMedCrossRefGoogle Scholar
  42. Rossi, H. H., and Kellerer, A. M., 1974, The validity of risk estimates of leukemia incidence based on Japanese data, Radiat. Res. 58: 131–140.PubMedCrossRefGoogle Scholar
  43. Rossi, H. H., and Mays, C. W., 1978, Leukemia risk from neutrons, Health Phys. 34: 353–360.PubMedCrossRefGoogle Scholar
  44. Savage, J. R. K., 1970, Sites of radiation induced chromosome exchanges, Curr. Top. Radiat. Res. 6: 131–194.Google Scholar
  45. Sax, K., 1938, Chromosome aberrations induced by x-rays, Genetics 23: 494–516.PubMedGoogle Scholar
  46. Sax, K., 1941, Types and frequencies of chromosomal aberrations induced by x-rays, Cold Spring Harbor Symp. Quant. Biol. 9: 93.CrossRefGoogle Scholar
  47. Schmid, E., Rimpl, G., and Bauchinger, M., 1973, Dose—response relation of chromosome aberrations in human lymphocytes after in vitro irradiation with 3 MeV electrons, Radiat. Res. 57: 228–238.CrossRefGoogle Scholar
  48. Shellabarger, C. J., Bond, V. P., Cronkite, E. P., and Aponte, G. E., 1969, Relationship of dose of total-body Co radiation to incidence of mammary neoplasia in female rats, in: Radiation-Induced Cancer, Iaea-SM-118/9.Google Scholar
  49. Shellabarger, C. J., Kellerer, A. M., Rossi, H. H., Goodman, L. J., Brown, R. D., Mills, R. E., Rao, A. R., Shanley, J. P., and Bond, V. P., 1974, Rat mammary carcinogenesis following neutron or x-irradiation, in: Biological Effects of Neutron Irradiation, Iaea, Vienna.Google Scholar
  50. Shellabarger, C., Chmelevsky, D., and Kellerer, A. M., 1980, Induction of mammary neoplasms in the Sprague—Dawley rat by 430 keV neutrons and x-rays, J. Natl. Cancer Inst. 64: 821–833.PubMedGoogle Scholar
  51. Sinclair, W. K., 1968, The shape of radiation survival curves of mammalian cells cultured in vitro, in: Biophysical Aspects of Radiation Quality, Iaea, Vienna.Google Scholar
  52. Sparrow, A. H., Underbrink, A. G., and Rossi, H. H., 1972, Mutations induced in Tradescantia by small doses of x-rays and neutrons: Analysis of dose—response curves, Science 176: 916–918.PubMedCrossRefGoogle Scholar
  53. Spiess, H., and Mays, C. W., 1973, Protraction effect on bone sarcoma induction of 224Ra in children and adults, in: Radionuclide Carcinogenesis, Aec Symposium Series 29, Cone-720505, pp. 437–450, National Technical Information Service, Springfield, Va.Google Scholar
  54. Ullrich, R. L., and Storer, J. B., 1979, Influence of y irradiation on the development of neoplastic disease in mice. I. Reticular tissue tumors, Radiat. Res. 80: 303–316.PubMedCrossRefGoogle Scholar
  55. Ullrich, R. L., Jernigan, M. C., and Adams, L. M., 1979, Induction of lung tumors in Rfm mice after localized exposures to X-rays or neutrons, Radiat. Res. 80: 464–473.PubMedCrossRefGoogle Scholar
  56. Vogel, H. H., 1969, Mammary gland neoplasms after fission neutron irradiation, Nature (London) 222: 1279–1281.CrossRefGoogle Scholar
  57. Wolf, S., 1954, Delay of chromosome rejoining in Vicia faba induced by irradiation, Nature (London) 173: 501–502.CrossRefGoogle Scholar
  58. Yuhas, J. M., 1974, Recovery from radiation—carcinogenic injury to the mouse ovary, Radiat. Res. 60: 321–322.PubMedCrossRefGoogle Scholar

Selected General References

  1. Attix, F. H., and Roesch, W. C., 1968, Radiation Dosimetry, Vol. I, Academic Press, New York.Google Scholar
  2. Hine, G. J., and Brownell, G. K., 1956, Radiation Dosimetry, Academic Press, New York.Google Scholar
  3. Icru, 1970, Report 16: Linear Energy Transfer, International Commission on Radiation Units and and Measurements, Washington, D.C.Google Scholar
  4. Icru, 1980, Report 33: Radiation Quantities and Units, International Commission on Radiation Units and Measurements, Washington, D.C.Google Scholar
  5. Kellerer, A. M., and Chmelevsky, D., 1975, Concepts of microdosimetry. I. Quantities, Radiat. Environ. Biophys. 12: 61–69.PubMedCrossRefGoogle Scholar
  6. Kellerer, A. M., and Chmelevsky, D., 1975, Concepts of microdosimetry. II. Probability distributions of the microdosimetric variables, Radiat. Environ. Biophys. 12: 205–216.PubMedCrossRefGoogle Scholar
  7. Kellerer, A. M., and Chmelevsky, D., 1975, Concepts of microdosimetry. Iii. Mean values of the microdosimetric distributions, Radiat. Environ. Biophys. 12: 321–335.PubMedCrossRefGoogle Scholar
  8. Kellerer, A. M., and Chmelevsky, D., 1975, Criteria for the applicability of Let, Radial. Res. 63: 226–234.CrossRefGoogle Scholar
  9. Rossi, H. H., 1967, Energy distribution in the absorption of radiation, Adv. Biol. Med. Phys. 11: 27–85.PubMedCrossRefGoogle Scholar
  10. Whyte, G. N., 1959, Principles of Radiation Dosimetry, Wiley, New York.Google Scholar
  11. Elkind, M., and Whitmore, G., 1967, The Radiobiology of Cultured Mammalian Cells, Gordon & Breach, London.Google Scholar
  12. Fisz, M., 1965, Probability Theory and Mathematical Statistics, Wiley, New York.Google Scholar
  13. Hug, O., and Kellerer, A. M., 1966, Stochastik der Strahlenwirkung, Springer, New York.CrossRefGoogle Scholar
  14. Kellerer, A. M., and Hug, O., 1972, Theory of dose—effect relations, in: Encyclopedia of Medical Radiology, Vol. II/3, pp. 1–42, Springer, New York.Google Scholar
  15. Zimmer, K. G., 1961, Studies on Quantitative Radiation Biology, Oliver & Boyd, London.Google Scholar
  16. Kellerer, A. M., and Rossi, H. H., 1972, The theory of dual radiation action, Curr. Top. Radiat. Res. 8: 85–158.Google Scholar
  17. Kellerer, A. M., and Rossi, H. H., 1978, A generalized formulation of dual radiation action, Radiat. Res. 75: 471–488.CrossRefGoogle Scholar
  18. Lea, D. E., 1946, Actions of Radiations on Living Cells, Cambridge University Press, Cambridge.Google Scholar
  19. Rossi, H. H., 1970, The effects of small doses of ionizing radiation, Phys. Med. Biol. 15: 255–262.PubMedCrossRefGoogle Scholar
  20. Savage, J. R. K., 1970, Sites of radiation induced chromosome exchanges, Curr. Top. Radial. Res. 6: 131–194.Google Scholar
  21. National Academy of Sciences-National Research Council, 1980, The Effects on Populations of Exposure to Low Levels of Ionizing Radiation, Washington, D.C.Google Scholar
  22. U.S. Atomic Energy Commission, 1973, Radionuclide Carcinogenesis, US-Aec Symposium Series 29, Cone-720505, National Technical Information Service, Springfield, Va.Google Scholar
  23. United Nations, 1977, Sources and Effects of Ionizing Radiation, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Albrecht M. Kellerer
    • 1
  • Harald H. Rossi
    • 2
    • 3
  1. 1.Institut für Medizinische StrahlenkundeUniversity of WürzburgWürzburgFederal Republic of Germany
  2. 2.Radiological Research Laboratory, Department of RadiologyCancer CenterNew YorkUSA
  3. 3.Institute of Cancer ResearchColumbia University College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations