Advertisement

Prospects for Liposomes as Drug Carriers

  • Gabriel Lopez-Berestein
  • Roman Perez-Soler

Abstract

Liposomes are vesicles composed of concentric phospholipid bilayers that are formed spontaneously when an aqueous solution is added to a dried lipid film (Figure 1). Several types of liposomes—multilamellar vesicles (MLV), small unilamellar vesicles (SUV), and reverse evaporation vesicles (REV)—have been described. MLV are used extensively as drug carriers for antineoplastic and antimicrobial drugs: lipophilic drugs can be incorporated in the MLV’s large lipid compartment and hydrophilic drugs can be encapsulated between the vesicles’ lipid bilayers. The liposomes’ size. manbrane charge, fluidity, and other characteristics may modify their in vivo behavior. The changes in drug bioavailability and biodistribution associated with liposome incorporation have been exploited to alter drug toxicity and enhance drug targeting. Design of liposomal drug carriers should be based on the rational selection of the drug or drug analogue; drug carriers; and the target disease, be it focused on a cell, an organ, or a tissue. We review here general pharmacologic concepts of the development of liposamal carriers for antimicrobial and antineoplastic agents.

Keywords

Drug Carrier Cutaneous Leishmaniasis Liposomal Doxorubicin Cytosine Arabinoside Systemic Fungal Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.R.C. New, M.L. Chance, and S. Heath, Antileishmanial activity of amphotericin and other antifungal agents entrapped in liposcxnes. J. Antimicrob. Chemother. 8:371–38l (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    C.B. Panosian, M. Barza, R. Szoka, and D.J. Wyler, Treatment of experimental cutaneous leishmaniasis with liposome-intercalated amphotericin B. Antimicrob. Agents Chemother. 25:655–656 (1984).PubMedGoogle Scholar
  3. 3.
    J. Berman, W.L. Hanson, W.L. Chapman, C.R. Alving, and G. Lopez-Berestein, Antileishmanial activity of liposome-encapsulated amphotericin B in hamsters and monkeys. Antimicrob. Agents Chemother. 30 6:847–851 (1986).PubMedGoogle Scholar
  4. 4.
    R.L. Taylor, D.M. Williams, P.C. Craven, J.R. Graybill, D.J. Drutz, and W.E. Magee, Amphotericin B in liposomes: a novel therapy for histoplasmosis. Am. Rev. Respir. Pis. 125: 610–611 (1982).Google Scholar
  5. 5.
    J.R. Graybill, P.C. Craven, L. Taylor, D.M. Williams, and W.E. Magee, Treatment of murine cryptococcosis with liposome-associated amphotericin B. J. Infect. Pis. 145:748–752 (1982).CrossRefGoogle Scholar
  6. 6.
    G. Lopez-Berestein, R.L. Hopfer, R. Mehta, K. Mehta, E.M. Hersh, and R.L. Juliano, Treatment of disseminated fungal infections in neutropenic mice with liposome-encapsulated amphotericin B. J. Infect. Dis. 150:278–283 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    G. Lopez-Berestein, R. Mehta, R.L. Hopfer, K. Mills, L. Kasi, K. Mehta, V. Fainstein, M. Luna, E. M. Hersh, and R.L. Juliano, R.L. Treatment and prophylaxis of dissoninated infection due to Candida albicans in mice with liposome-encapsulated amphotericin B. J. Infect. Dis. 147:939–944 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    G. Lopez-Berestein, T. McQueen, and K. Mehta, Protective effect of liposomal-amphotericin B against C. albicans in mice. Chancer Prug Peliv.2:183–189 (1985).Google Scholar
  9. 9.
    F.C. Szoka, P. Milholland, and M. Barza, Effect of lipid composition and liposome size on toxicity and in vitro fungicidal activity of liposome-intercalated amphotericin B. Antimicrob. Agents Chemother. 311:421–429 (1987).Google Scholar
  10. 10.
    G. Lopez-Berestein, M.G. Rosenblum, and R. Mehta, Altered tissue distribution of amphotericin B by liposomal-encapsulation: comparison of normal mice to mice infected with (dida albicans. Cancer Prug Peliv.3:199–205 (1984).CrossRefGoogle Scholar
  11. 11.
    G. Lopez-Berestein, V. Fainstein, R.L. Hopfer, K. Mehta, M.P. Sullivan, M. Keating, M.G. Rosenblum, R. Mehta, M. Luna, E.M. Hersh, J. Reuben, R.L. Juliano, and G.P. Bodey, Liposomal-amphotericin B for the treatment of systemic fungal infections in patients with cancer: A preliminary report. J. Infect. Dis. 4:704–710 (1985).CrossRefGoogle Scholar
  12. 12.
    G. Lopez-Berestein, G.P. Bodey, L.A. Frankel, and K. Mehta, Treatment of hepatosplenic candidiasis with liposomal-amphotericin B. Antimicrob. Agents Chemother. 31:421–429 (1987).Google Scholar
  13. 13.
    C.R. Alving, E.A. Stack, W.L. Chapman, Jr., V.B. Waits, L.D. Hendricks, G.M. Swartz, Jr., and W.L. Hanson, Liposomes in leishmaniasis: therapeutic effects of antimonial drugs, 8-aminoquinolines, and tetracycline. Life Sci. 26:2231–2238 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    C.R. Alving, E.A. Stack, W.L. Hanson, P.S. Loizeaux, W.L. Chapman, Jr., and V.B. Waits, Improved therapy of experimantal leishmaniasis by use of liposome-encapsulated antimonial drug. Life Sci. 22:1021–1026 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    W.L. Chapman, Jr., W.L. Hanson, C.R. Alving, and L.D. Hendricks, Antilaishmanial activity of liposcxne-encapsulatad meglumine antimonata in tha dog. Am. J. Vat. Ras. 45: 1028–1030 (1984).Google Scholar
  16. 16.
    W.L. Chapman, Jr., V.B. Waits, and W.L. Hanson, Liposomes in leishmaniasis: effects of parasita virulence on treatment of axparimantal leishmaniasis in hamsters. Ann. Trop. Mad. Parasitol. 78:279–286 (1984).Google Scholar
  17. 17.
    J.V. Dasidario, and S.G. Campbell, Intraphagocytic killing of Salmonella typhimurium by liposoma-ancapsulatad caphalothin. J. Infact. Dis. 148:563–570, (1983).CrossRefGoogle Scholar
  18. 18.
    J.V. Dasidario, and S.G. Campbell, Liposoma-ancapsulatad caphalothin in tha treatment of axparimantal murine salmonellosis. Res. J. Raticuloandothal. Soc. 34:279–287, (1983).Google Scholar
  19. 19.
    P. Pirson, R. Staigar, and A. Trouat, Tha disposition of free and liposomally encapsulated antimalarial primaquine in mica. Biochem. Pharmacol. 31:3501–3507 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    P. Pirson, R.F. Staigar, A. Trouat, J. Gillat, and F. Herman, Primaquine liposomes in tha chonotharapy of axparimantal murine malaria. Ann. Trop. Mad. Parasitol. 74: 383–391 (1980).Google Scholar
  21. 21.
    W.C. Koff, S.D. Showaltar, D.A. Saniff, and B. Hampar, Lysis of harpas virus-infected calls by macrophages activated with fraa or liposoma-ancapsulatad lymphokina produced by a murine T call hybridoma. Infact. Immun. 42: 1067–1072 (1983).Google Scholar
  22. 22.
    E.B. Frasar-Smith, D.A. Eppstain, M.A. Larsan, and T.R. Matthews, Protective effect of a muramyl dipaptida analog encapsulated in or mixed with liposomas against Candida albicans infection. Infact. Immun. 39: 172–178 (1983).Google Scholar
  23. 23.
    C. LaBonnardiara, Donnaas praliminairas sur I’affat protecteur da interferon coupla a das 1’liposomas dans la modala souris-virus de I’hapatita murine. Ann. Microbiol. 129A:397–402 (1978).Google Scholar
  24. 24.
    I.A.J.M. Bakkar-Woudanbarg, A.F. Lokarsa, J.C. Vink-van dan Barg, F.H. Roardink, and M.F. Michal, Effect of liposcxna-antrappad ampicillin on survival of Listeria monocytogenes in murine peritoneal macrophages. Antimicrob. Agents Chemother. 30: 295–300 (1986).Google Scholar
  25. 25.
    P.F. Bonvantra, and G. Gragoriadis, Killing of intraphagocytic Staphylococcus aureus by dihydrostreptomycin entrapped within liposomas. Antimicrob. Agents Chanothar. 13:1049–1051 (1978).Google Scholar
  26. 26.
    T.I. Kozulitsina, O.A. Uvarova, V.I. Golyshavskaya, and M.P. Elshanskaya, Experimental study of chamotharapautic activity of various antibacterial drug combinations. Probl. Tubark. 7:53–57 (1980).Google Scholar
  27. 27.
    J.R. Morgan, and K.E. Williams, Preparation and properties of liposome-associatad gantamicin. Antimicrob. Agents Chemother. 17:544–548 (1980).PubMedGoogle Scholar
  28. 28.
    A. Rahman, D. Carmichaal, M. Harris, and J.K. Roh, Comparative pharmacokinetics of fraa doxorubicin and doxorubicin entrapped in cardiolipin liposomes. Cancer Ras. 46:2295–2299 (1986).Google Scholar
  29. 29.
    A. Gabizon, D. Goren, Z. Fuks, A. Meshorer, and Y. Barenholz, Superior therapeutic activity of liposome-associated Adriamycin in a murine metastatic tumor model. Br. J. Cancer 51:681–689 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    E. Mayhew, Y. Rustum, and W.J. Vail, Inhibition of liver metastases of M5076 tumor by liposome-entrapped adriamycin. Cancer Drug Deliv. 1:43–58 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    L.D. Mayer, M.E. Bally, M.J. Hope, and P.R. Cullis, Uptake of antineoplastic agents into large unilamellar vesicles in response to a monbrane potential. Biochim. Biophys. Acta. 8l6:294–302 (1985).PubMedCrossRefGoogle Scholar
  32. 32.
    D. Layton, and A. Trouet, A comparison of the therapeutic effects of free and liposomally encapsulated vincristine in leukemic mice. Eur. J. Cancer 16:945–950 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    D. Layton, J. De Meyere, M.P. Collard, and A. Trouet, The accumulation by fibroblasts of liposomally encapsulated vinblastine. Eur. J. Cancer 15:1475–1483 (1979).PubMedCrossRefGoogle Scholar
  34. 34.
    K.R. Patel, and J.D. Baldeschwieler, Mouse lewis lung carcinoma and hepatoma ascites treatment by combination of liposome chanotherapy and non-specific immunotherapy. Int. J. Cancer 34:717–723 (1984).PubMedCrossRefGoogle Scholar
  35. 35.
    J. Preise, F.W. Schmidt, and P. Magerstedt, Effect of liposome-entrapped methotrexatate on Ehrlich ascites tumor cells and uptake in primary liver cell tumor. J. Cancer Res. Clin. Oncol. 94:21–27, (1979).CrossRefGoogle Scholar
  36. 36.
    H.K. Kimelberg, T.F. Tracy, S.M. Biddlecome, and R.S. Bourke, The effect of entrapment in liposomes on the in vivo distribution of H3 methotrexate in a primate. Cancer Res. 36:2949–2957 (1976).PubMedGoogle Scholar
  37. 37.
    K.R. Patel, and J.D. Baldeschwieler, Treatment of intravenously implanted lewis lung carcinoma with liposcme-encapsulated cytosine arabinoside and non-specific immunotherapy. Int. J. Cancer 34:415–420 (1984).PubMedCrossRefGoogle Scholar
  38. 38.
    E. Mayhew, Y.M. Rustum, F. Szoka, and D. Papahadjopoulos, Role of cholesterol in enhancing the antitumor activity of cytosine arabinoside entrapped in liposomes. Cancer Treat. Rep. 63:1923–1928 (1979).PubMedGoogle Scholar
  39. 39.
    S.B. Kaye, J.A. Boden, and B.E. Ryman, The effect of liposome (phospholipid vesicle) entrapment of actinomycin D and methotrexate on the in vivo treatment of sensitive and resistant solid murine tumors. Eur. J. Cancer 17:279–289 (1981).PubMedCrossRefGoogle Scholar
  40. 40.
    J. Preise, W.H. Mueller, P. Magerstedt, and H.P. Schmoll, Pharmacokinetics of liposome encapsulated Cisplatin in rats. Arch. Int. Pharmacodyn. Ther. 258:180–192 (1982).Google Scholar
  41. 41.
    V.L. Kaledin, N.A. Matlenko, V.P. Nikolln, Y.V. Grutenko, and V.G. Budker, Intralymphatic administration of liposome-encapsulated drugs for mice: Possibility of suppression of the growth of tumor metastases in lymph nodes. J. Natl. Cancer Inst. 66:88l-887 (1981).PubMedGoogle Scholar
  42. 42.
    M.B. Yatvin, H. Muhlensiepen, W. Porshen, J.N. Weinstein, and L.E. Peinendegen, Selective delivery of liposome-associated cis-dichloro-diammine platinum (II) by heat and its influence on tumor drug uptake and growth. Cancer Res. 41:1602–1607 (1981).PubMedGoogle Scholar
  43. 43.
    J. Khato, E.R. Priester, and S.M. Sieber, Enhanced lymph node uptake of melphalan following liposcxnal entrapment and effects on lymph node metastasis in rats. Cancer Treat. Rep. 66:517–527 (1982).PubMedGoogle Scholar
  44. 44.
    R. Perez-Soler, A.R. Khokhar, P. Claringbold, L.P. Kasi, and G. Lopez-Berestein, Effects on the monocyte-macrophage system and antitumor activity against L1210 leukemia of cis-bis-cyclopentenecarboxylato-trans-R,R-1,2-diaminocyclohexane-platinum (II) encapsulated in multilamellar vesicles. J. Natl. Cancer Inst. 77:1137–1143 (1986).PubMedGoogle Scholar
  45. 45.
    R. Perez-Soler, A.R. Khokhar, and G. Lopez-Berestein, Development of lipophilic cisplatin analogues incorporated in liposomes. In: Liposomes as Drug Carriers: Trends and Progress. (G. Gregoriadis Ed.). John Wiley & Sons, New York, In press.Google Scholar
  46. 46.
    J. Lautersztain, R. Perez-Soler, A.R. Khokhar, R.A. Newman, and G. Lopez-Berestein, Pharmacokinetics and tissue distribution of liposome-encapsulated cis-bis-N-decyliminodiacetato-1,2-diaminocyclohexane-platinum (II). Cancer Qiemother. Pharmaool. 18:93–97 (1986).Google Scholar
  47. 47.
    G. Deliconstantinos, G. Gregoriadis, G. Abel, M. Jones, and D. Robertson, D. Incorporation of cis-dichlorobis-cyolopentylamineplatinun (II) into liposomes enhances its uptake by ADJ/PC6A tunours implanted subcutaneously into mice. Bioohem. Soc. Trans. 5:1326–1328 (1977).Google Scholar
  48. 48.
    W. Rubas, A. Supersaxo, H.G. Weder, H.R. Hartmann, H. Hengartner, H. Schott, and R. Sohwendener Treatment of murine L1210 lymphoid leukonia and melanoma B16 with lipophilic oytosine arabinoside prodrugs incorporated into unilamellar liposomes. Int. J. Cancer 37:149–154 (1986).PubMedCrossRefGoogle Scholar
  49. 49.
    S.C. Kinsky, K. Hashimoto, J.E. Loader, M.S. Knight, and D.J. Fernandes, Effect of liposomes sensitized with methotrexate-γ-dimyristoyl phosphatidylethanolamlne on cells that are resistant to methotrexate. Biochim. Biophys. Acta. 885:129–135 (1986).PubMedCrossRefGoogle Scholar
  50. 50.
    Brassinne, G. Atassi, J. Frühling, W. Penasse, A. Coune, J. Hildebrand, J.M. Ruyssohaert, and C. Laduron, Antitunor activity of a water-insoluble compound entrapped in liposomes on L1210 leukemia in mice. J. Natl. Canoer Inst. 70: 1081–1085 (1983).Google Scholar
  51. 51.
    E.H. Herman, A. Rahman, F.J. Ferrans, F.A. Vick, and P.S. Schein, Prevention of chronic doxorubicin oardiotoxioity in beagles by liposcxnal encapsulation. Cancer Res. 43:5427–5432 (1983).PubMedGoogle Scholar
  52. 52.
    E. Mayhew, M. Goldrosen, J. Vaage, and Y. Rustum, Liposoraal-adriamycin and survival of mice bearing liver metastases of colon carcinomas 26 or 38. Proc. Am. Assoc. Cancer Res. 27:402 (1986).Google Scholar
  53. 53.
    A. Rahman, A. Fumagalli, B. Barbieri, P.S. Schein, And M. Casazza, Antitumor and toxicity evaluation of free doxorubicin and doxorubicin entrapped in cardiolipin liposcxnes. Cancer Chemother. Pharmaool. 16:22–27 (1986).Google Scholar
  54. 54.
    F. Olson, E. Mayhew, D. Maslow, Y. Rustum, and F. Szoka, Characterization, toxicity and therapeutic efficacy of Adriamycin encapsulated in liposomes. Eur. J. Cancer Clin. Onool. 18:167–176 (1982).CrossRefGoogle Scholar
  55. 55.
    R. Perez-Soler, A.R. Khokhar, M.P. Hacker, and G. Lopez-Berestein, Toxicity and antitumor activity of cis-bis-cyclopentenecarboxylato-1,2-diaminocyolohexane platinum (II) encapsulated in multilamellar vesicles. Cancer Res. 46:6269–6273 (1986).PubMedGoogle Scholar
  56. 56.
    J.N. Weinstein, R.L. Magin, M.B. Yatvin, and D.S. Zaharko, Liposomes and local hyperthermia: Selective delivery of methotrexate to heated tumors. Science 204:188–191 (1979).PubMedCrossRefGoogle Scholar
  57. 57.
    J.N. Weinstein, R.L. Magin, R.L. Cysyk, and D.S. Zaharko, Treatment of solid L1210 murine tumors with local hyperthermia and temperature-sensitive liposomes containing methotrexate. Cancer Res. 40:1388–1395 (1980).PubMedGoogle Scholar
  58. 58.
    A. Gabizon, D. Goren, Z. Fuks, Y. Barenholz, A. Dagan, and A. Meshorer, Enhancement of adriamycin delivery to liver metastatic cells with increased tumoricidal effect using liposomes as drug carriers. Cancer Res. 43:4730–4735 (1983).PubMedGoogle Scholar
  59. 59.
    T. Kataoka, and T. Kobayashi, Enhancement of chaaotherapeutic effect by entrapping 1-β-D-arabinofuranosyl oytosine in lipid vesicles and its mode of action. Ann. N. Y. Acad. Sci. 308:387–394, (1978).PubMedCrossRefGoogle Scholar
  60. 60.
    J.P. Soulier, A. Coune, C. Brassinne, C. Laduron, G. Atassi, J.M. Ruyssohaert, and J. Frühling, Intravenous infusion of high doses of liposomes containing NSC 251635, a water-insoluble cytostatic agent. A pilot study with pharmacokinetic data. J. Clin. Oncol. 4:789–797 (1986).Google Scholar
  61. 61.
    T. Peretz, A. Gabizon, R. Catane, R. Ben-Yosef, S. Biran, S. Drukman, and Y. Barenholz, Clinical studies on liposome-associated doxorubicin clinical (L-DXR. Progress report. Proc. Am. Assoc. Clin. Oncol. 6:43 (1987).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Gabriel Lopez-Berestein
    • 1
  • Roman Perez-Soler
    • 1
  1. 1.Immunobiology and Drug Carriers Section, Department of Clinical Immunology and Biological TherapyThe University of Texas M. D. Anderson Hospital, Tumor Institute at HoustonHoustonUSA

Personalised recommendations