Protective Effects of Thiols on Carcinogenesis Induced in Rats by 2-Acetylaminofluorene

  • Carmelo F. Cesarono
  • Linda Scarabelli
  • Mauro Orunesu
  • Maria Bagnasco
  • Alberto Izzotti
  • Silvio De Flora


Aminothiols play a fundamental role in the physiology of the living cell. The most abundant and best studied compound of this class is glutathione (GSH). It is considered of paramount importance for many functions, such as amino acids transport, protein and DNA synthesis, membrane structure and activity (for thorough reviews see refs. 1 and 2). Moreover, GSH being a nucleophilic compound, it hampers alterations induced by reactive oxygen species and by endogenous or exogenous metabolites (for a review see ref. 3). Depletion of hepatic GSH levels affects a number of biochemical functions, as well as the efficiency of the cell response to physically or chemically induced injuries (3,4).


Hyperplastic Nodule GSSG Reductase Alkaline Elution Exogenous Metabolite Toxicity Test System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Meister and M.E. Anderson, Glutathione, Annu. Rev. Biochem. 52, 711–760 (1983).PubMedCrossRefGoogle Scholar
  2. 2.
    A. Larson, S. Orrenius, A. Holmgren and B. Mannervik (Eds.), Functions of Glutathione: Biochemical, Physiological, Toxicological and Clinical Aspects. Raven Press, New York, 1983.Google Scholar
  3. 3.
    O.F. Nygaard, M.G. Simic and J.N. Hauber (Eds.) Radioprotectors and Anticarcinogens. Academic Press, New York, 1983.Google Scholar
  4. 4.
    J.H.N. Meerman and R.B. Tljdens, Effect of glutathione depletion on the hepatotoxicity and covalent binding to the rat liver macromolecules of N-hydroxy-2-acetylaminofluorene, Cancer Res. 45, 1132–1139 (1985).PubMedGoogle Scholar
  5. 5.
    C.F. Cesarone, L. Scarabelli and M. Orunesu, Effect of glutathione on alterations of liver DNA structure and metabolic activities induced in vivo by 2-acetylaminofluorene, Anticancer Res 6, 1233–1286 (1986).Google Scholar
  6. 6.
    C.F. Cesarone, L. Scarabelli and M. Orunesu, Effect of glutathione and N-acetylcysteine on hepatocellular modifications induced by 2-acetylaminofluorene, Toxicol. Pathol. 14, 445–450 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    S. De Flora C. Bennicelli, A. Camoirano, D. Serra, M. Romano, G.A. Rossi, A. Morelli and A. De Flora, In vivo effects of N-acetylcysteine on glutathione metabolism and on the biotransformation of carcinogenic and/or mutagenic compounds. Carcinogenesis 6, 1735–1745 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    S. De Flora, M. Astengo, D. Serra and C. Bennicelli, Inhibition of urethan-induced lung tumors in mice by dietary N-acetylcysteine, Cancer Lett. 32, 135–241 (1986).Google Scholar
  9. 9.
    M. Wilpart, A. Speder and M. Roberfroid, Anti-initiation activity of N-acetylcysteine in experimental colonic carcinogenesis. Cancer Lett 31, 319–324 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    J.Y.H. Chan, D.L. Stout and F.F. Becker, Protective role of thiols in carcinogen-induced DNA damage in rat liver. Carcinogenesis 7, 1621–1624 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    G.W. Teebor and F.F. Becker, Regression and persistence of hyperplastic nodules induced by N-2-fluorenylacetamide and their relationship to hepatocarcinogenesis, Cancer Res. 31, 1–3 (1971).PubMedGoogle Scholar
  12. 12.
    C.F. Cesarone, C. Bolognesi and L. Santi, DNA-damage induced in vivo in various tissues by nitrochlorobenzene derivatives, Mutat. Res. 116, 238–246 (1983).Google Scholar
  13. 13.
    K.W. Kohn, L.C. Erickson, R.A. Grimek-Eqing and C.A. Friedman, Fractionation of DNA from mammalian cells by alkaline elution. Biochemistry 15, 4629–4637 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    C.F. Cesarone, C. Bolognesi and L. Santi, Improved microfluorometric DNA determination in biological material using 33258 Hoechst, Anal. Biochem. 100, 188–197 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Pitot and M.H. Hanigan, Gamma-glutamyl transpeptidase: its role in hepatocarcinogenesis. Carcinogenesis 6, 165–172 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    C.F. Cesarone, M. Romano, D. Serra, L. scarabelli and S. De Flora, Effects of aminothiols in 2-acetylaminofluorene-treated rats. II. Glutathione cycle and liver cytosolic activities. In Vivo 1, No. 2 (1987).Google Scholar
  17. 17.
    D.M. Maron and B.N. Ames, Revised methods for the Salmonella mutagenicity test, Mutat. Res. 113, 173–215 (1983).PubMedGoogle Scholar
  18. 18.
    S. De Flora, C. Bennicelli, A. Camoirano, D. Serra, C. Basso, P. Zanacchi and C. F. Cesarone, This volume.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Carmelo F. Cesarono
    • 1
  • Linda Scarabelli
    • 1
  • Mauro Orunesu
    • 1
  • Maria Bagnasco
    • 2
  • Alberto Izzotti
    • 2
  • Silvio De Flora
    • 2
  1. 1.Institute of General PhysiologyUniversity of GenoaGenoaItaly
  2. 2.Institute of HygieneUniversity of GenoaGenoaItaly

Personalised recommendations