Modulation of Glutathione Levels and Metabolism

  • Alton Meister


Glutathione (L-γ-glutamyl-L-cysteinyl-glycine), a tripeptide present in substantial concentrations in virtually all mammalian cells, plays a variety of roles in catalysis, metabolism, transport, and in cellular protection. A review of glutathione metabolism was presented at the first International Conference on Radioprotectors and Anticarcinogens (1); see also (2–6). A summary of glutathione metabolism is presented in Fig. 1. Understanding of the biochemistry of glutathione has led to procedures by which cellular levels of glutathione may be decreased or increased; glutathione metabolism may be modulated in other ways by selective inhibition of certain enzymes.


Glutathione Level Glutathione Metabolism Glutathione Depletion Glutathione Synthesis Glutathione Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Meister, Glutathione metabolism and transport. In: Radioprotectors and Anticarcinogens (O.F. Nygaard and M.G. Simic, Eds.), pp. 121–152. Academic Press, New York, 1983.Google Scholar
  2. 2.
    A. Larsson, S. Orrenius, A. Holmgren, and B. Mannervik (Eds.), Fifth Karolinska Institute Nobel Conference: Functions of Glutathione — Biochemical, Physiological, and Toxicological Aspects. Raven Press, New York, 1983.Google Scholar
  3. 3.
    I.M. Arias and W.B. Jakoby (Eds.), Glutathione, metabolism and function; Kroc Foundation Series, Vol. 6. Raven Press, New York, 1976.Google Scholar
  4. 4.
    A. Meister, New aspects of glutathione biochemistry and transport; Selective alteration of glutathione metabolism. Fed. Proc 43, 3031–3042 (1984).PubMedGoogle Scholar
  5. 5.
    A. Meister and M.E. Anderson, Glutathione. Annu. Rev. Biochem., 52, 711–760 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Meister, Glutathione: metabolism, transport and the effects of selective modifications of cellular glutathione levels. In: Thioredoxin and Glutaredoxin Systems: Structure and Function, Ninth Karolinska Institute Nobel Conference (A. Holmgren, C.I. Branden, H. Jornvall and B.-M. Sjoberg, Eds.), pp. 339–348. Raven Press, New York, 1986.Google Scholar
  7. 7.
    A. Meister, 5-Oxoprolinuria (pyroglutamic aciduria) and other disorders of the γ-glutamyl cycle. In: Metabolic Basis of Inherited Diseases, 5th ed. (J.B. Stanbury, J.B. Wyngaarden, D.S. Frederickson, J.L. Goldstein, and M.S. Brown, Eds.), Chapter 17, pp. 348–359. McGraw Hill, New York, 1983.Google Scholar
  8. 8.
    P. Richman and A. Meister, Regulation of y-glutamylcysteine syntetase by nonallosteric feedback inhibition of glutathione. J. Biol. Chem., 250, 1422–1426 (1975).PubMedGoogle Scholar
  9. 9.
    O.W. Griffith and A. Meister, Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. Chem., 254, 7558–7560, 1979.PubMedGoogle Scholar
  10. 10.
    A. Meister, On the synthesis and utilization of glutamine. Harvey Lect. Ser., 63, 139–178 (1969).Google Scholar
  11. 11.
    A. Meister, Glutamine synthetase of mammals. In: The Enzymes (P.D. Boyer, Ed.), Vol. 10, pp. 699–754. Academic Press, New York, 1974.Google Scholar
  12. 12.
    A. Meister, Inhibition of glutamine synthetase and γ-glutamylcysteine synthetase by methionine sulfoximine and related compounds. In: Enzyme-Activated Irreversible Inhibitors (N. Seiler, M.J. Jung and J. Koch-Weser, Eds.), pp. 187–211. Elsevier-North Holland Biomedical Press, Amsterdam, The Netherlands, 1978.Google Scholar
  13. 13.
    A. Meister, Selective modification of glutathione metabolism. Science, 220, 471–477 (1983).CrossRefGoogle Scholar
  14. 14.
    O.W. Griffith, M.E. Anderson and A. Meister, Inhibition of glutathione biosynthesis by prothionine sulfoximine (S-n-propyl-homocysteine sulfoximine): A selective inhibitor of γ-glutamylcysteine synthetase. J. Biol. Chem., 254, 1205–1210 (1979).PubMedGoogle Scholar
  15. 15.
    O.W. Griffith, Mechanism of action, metabolism and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J. Biol. Chem., 257, 13704–13712 (1982).PubMedGoogle Scholar
  16. 16.
    O.W. Griffith and A. Meister, Interorgan translocation, turnover and metabolism. Proc. Natl. Acad. Sci. U.S.A., 76, 4932–4935 (1979).CrossRefGoogle Scholar
  17. 17.
    O.W. Griffith and A. Meister, Origin and turnover of mitochondrial glutathione. Proc. Natl. Acad. Sci. U.S.A., 4668–4672 (1985).Google Scholar
  18. 18.
    A.P. Seddon and A. Meister, unpublished data (1983).Google Scholar
  19. 19.
    J.K. Dethmers and A. Meister, Glutathione export by human lymphoid cells: Depletion of glutathione by inhibition of its synthesis decreases export and increases sensitivity to irradiation. Proc. Natl. Acad. Sci. U.S.A., 78, 7492–7496 (1985).CrossRefGoogle Scholar
  20. 20.
    A. Meister, Modulation of intracellular levels of glutathione. In: Biochemical Modulation of Anticancer Agents: Experimental and Clinical Approaches (F. Valeriote and L. Baker, Eds.), pp. 245–275. Martinus Nijhaus, Boston, 1986.CrossRefGoogle Scholar
  21. 21.
    A. Meister and O.W. Griffith, Effects of methionine sulfoximine analogs on the synthesis of glutamine and glutathione: Possible chemotherapeutic implications. Cancer Treat. Rep., 63, 1115–1121 (1979).PubMedGoogle Scholar
  22. 22.
    M. Guichard, G. Jensen, A. Meister and E.P. Clark and E.R. Epp, The role of thiols in cellular response to radiation and drugs. Radiat. Res., 613 (1983).Google Scholar
  23. 23.
    J.E. Biaglow, M.E. Varnes, E.P. Clark and E.R. Epp, The role of thiols in cellular response to radiation and drugs. Radiat. Res., 437–455 (1983).Google Scholar
  24. 24.
    J.B. Mitchell, A. Russo, J.E. Biaglow, and A. McPherson, Cellular glutathione depletion by diethyl maleate or buthionine sulfoximine: No effect of glutathione depletion on the oxygen enhancement ratio. Radiat. Res., 96, 422–428 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    B.A. Arrick, C.F. Nathan, O.W. Griffith and Z.A. Cohn, Glutathione depletion sensitizes tumor cells to oxidative cytolysis. J. Biol. Chem., 257, 1231–1237 (1982).PubMedGoogle Scholar
  26. 26.
    B.A. Arrick, C.F. Nathan, and Z.A. Cohn, Inhibition of glutathione synthesis augments lysis of murine tumor cells by sulfhydryl-reactive antineoplastics. J. Clin. Invest., 71, 258–267 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    K. Suzakae, B.J. Petro and D.T. Vistica, Reduction in glutathione content of L-PAM resistant L1210 cells confers drug sensitivity. Biochem. Pharmacol., 31, 121–124 (1982).CrossRefGoogle Scholar
  28. 28.
    K. Suzukake, B.P. Vistica, and D.P. Vistica, Dechlorination of L-phenylalanine mustard by sensitive and resistant tumor cells and its relationship to intracellular glutathione content. Biochem. Pharmacol., 32, 165–167 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    D.T. Vistica, S. Somfai-Relle, K. Suzukake and B. Petro, Inhibition of glutathione biosythesis by S-n-butyl homocysteine sulfoximine and sensitization of murine tumor cells resistant to L-phenylalanine mustard. J. Cell Biochem. Suppl., 6, 375 (1982).Google Scholar
  30. 30.
    K.G. Louie, B.C. Behrens, T.J. Kihsella, T.C. Hamilton, K.R. Grotzinger, W.M. McKoy, M.A. Winker and R.F. Ozols, Radiation survival parameters of antineoplastic drug-sensitive and resistant human ovarian cancer cell lines and their modification by buthionine sulfoximine. Cancer Res., 45, 2110–2115 (1985).PubMedGoogle Scholar
  31. 31.
    R. Ozols, T.C. Hamilton, K.G. Louie, B.C. Behrens and R.C. Young, Glutathiione depletion with buthionine sulfoximine: Potential clinical applications. In: Biochemical Modulation of Anticancer Agents: Experimental and Clinical Approaches (F. Valeriote and L. Baker, Eds.), pp. 277–294. Martinus Nijhaus, Boston, 1986.CrossRefGoogle Scholar
  32. 32.
    P. deMiranda, L.M. Beacham III, T.H. Creagh and G.B. Elion, The Metabolic fate of methylnitroimidazole moiety of azanthioprine in the rat. J. Pharmacol. Exp. Ther., 187, 588–601 (1973).Google Scholar
  33. 33.
    W.G. DeGraff, A. Russo and J.B. Mitchell, Glutathione depletion greatly reduces neocarzinostatin cytoxicity in Chinese hamster V79 cells. J. Biol. Chem., 260, 8312–8315 (1985).PubMedGoogle Scholar
  34. 34.
    M.E. Anderson and A. Meister, Intracellular delivery of cysteine. Methods Enzymol., 143 (1987), in press.Google Scholar
  35. 35.
    S.M. Birnbaum, M. Winitz and J.P. Greenstein, Quantitative nutritional studies with water-soluble, chemically defined diets. III. Individual amino acids as sources of “non-essential” nitrogen. Arch. Biochem. Biophys., 72, 428–436 (1957).PubMedCrossRefGoogle Scholar
  36. 36.
    J.W. Olney, O.L. Ho and V. Rhee, Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Brain Res., 14, 61–76 (1971).Google Scholar
  37. 37.
    R.L. Karlsen, I. Grofova, D. Malthe-Sorenssen and F. Fonnum, Morphological changes in rat brain induced by L-cysteine and injection in newborn animals. Brain Res., 208, 167–180 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    Y. Nishiuch, M. Sasaki, M. Nakayasu and A. Oikawa, Cytotoxicity of cysteine in culture media. In Vitro 12., 635–638 (1976).CrossRefGoogle Scholar
  39. 39.
    J.M. Williamson, B. Boettcher and A. Meister, An intracellular cysteine delivery system that protects against toxicity by promoting glutathione synthesis. Proc. Natl. Acad. Sci. U.S.A., 79, 6246–6249 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    J.M. Williamson and A. Meister, Stimulation of hepatic glutathione formation by administration of L-2-oxothiazolidine-4-carboxylate, a 5-oxo-L-prolinase substrate. Proc. Natl. Acad. Sci. U.S.A., 78, 936–939 (1981).PubMedCrossRefGoogle Scholar
  41. 41.
    J.M. Williamson and A. Meister, New substrates of 5-oxo-L-prolinase. J. Biol. Chem., 257, 12039–12042 (1982).PubMedGoogle Scholar
  42. 42.
    A. Meister, M.E. Anderson and O. Hwang, Intracellular cysteine and glutathione delivery systems. J. Am. Coll. Nutr., 5, 137–151 (1986).PubMedGoogle Scholar
  43. 43.
    M.E. Anderson, M. Underwood, R.J. Bridges, and A. Meister, Glutathione transport and metabolism in the choroid plexus. Fed. Proc., 45, 1733 (1986).Google Scholar
  44. 44.
    O.W. Griffith, R.J. Bridges and A. Meister, Transport of γ-glutamyl amino acids; role of glutathione and γ-glutamyl transpeptidase. Proc. Natl. Acad. Sci. U.S.A., 76, 6319–6322 (1979).PubMedCrossRefGoogle Scholar
  45. 45.
    R.J. Bridges and A. Meister, γ-Glutamyl amino acids; transport and conversion to 5-oxoproline in the kidney. J. Biol. Chem., 260, 7304–7308 (1985).PubMedGoogle Scholar
  46. 46.
    M.E. Anderson and A. Meister, Transport and direct utilization of γ-glutamylcyst(e)ine for glutathione synthesis. Proc. Natl. Acad. Sci. U.S.A., 83, 1246–1250 (1986).CrossRefGoogle Scholar
  47. 47.
    R.N. Purl and A. Meister, Transport of glutathione as γ-glutamyl-cysteinylglycyl ester into liver and kidney. Proc. Natl. Acad. Sci. U.S.A., 80, 5258–5260 (1983).CrossRefGoogle Scholar
  48. 48.
    V.P. Wellner, M.E. Anderson, R.N. Purl, G.L. Jensen and A. Meister, Radioprotection by glutathione ester: Transport of glutathione ester into human lymphoid cells and fibroblasts. Proc. Natl. Acad. Sci. U.S.A., 81, 4732–4735 (1984).PubMedCrossRefGoogle Scholar
  49. 49.
    M.E. Anderson, F. Powrie, R.N. Purl and A. Meister, Glutathione monoethyl ester; preparation, uptake by tissues, and conversion to glutathione. Arch. Biochem. Biophys., 239, 538–548 (1985).PubMedCrossRefGoogle Scholar
  50. 50.
    G.L. Jensen and A. Meister, Radioprotection of human lymphoid cells by exogenously-supplied glutathione is mediated by γ-glutamyl transpeptidase. Proc. Natl. Acad. Sci. U.S.A., 80, 4714–4714 (1983).PubMedCrossRefGoogle Scholar
  51. 51.
    A. Meister, S.S. Tate and O.W. Griffith, γ-Glutamyl transpeptidase. Methods Enzymol., 77, 237–253 (1981).PubMedCrossRefGoogle Scholar
  52. 52.
    M.E. Anderson and A. Meister, Inhibition of γ-glutamyl transpeptidase and induction of glutathionuria by γ-glutamyl amino acids. Proc. Natl. Acad. Sci. U.S.A., 83, 5029–5032 (1986a).PubMedCrossRefGoogle Scholar
  53. 53.
    A. Perantoni, J.J. Berman and J.M. Rice, L. Azaserine toxicity in established cell lines. Correlation with y-glutamyl transpeptidase activity, Exp. Cell Res., 122, 55–61 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Alton Meister
    • 1
  1. 1.Cornell University Medical CollegeNew YorkUSA

Personalised recommendations