Advertisement

The Involvement of Free Radicals in Chemical Carcinogenesis

  • William A. Pryor

Abstract

Cancer is a multi-step process, involving three stages that can be operationally distinguished: initiation, promotion and progression. Initiation involves an irreversible alteration of the cellular DNA that permits the transformation of the cell to a non-malignant state. Promotion produces conditions that allow the initiated cell to become malignant, and progression is the growth of the malignant cell to a tumor.

Keywords

Free Radical Reaction Chemical Carcinogenesis Polycyclic Hydrocarbon Ketyl Radical Free Radical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Cerutti, Prooxidant states and tumor promotion. Science 227, 375 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    T. J. Slaga, A. J. P. Klein-Szanto, L. L. Triplett, L. P. Yotti, and J. E. Trosko, Skin-tumor-promoting activity of benzoyl peroxide, a widely used free radical-generating compound. Science 213, 1023–1025 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    T. W. Kensler and B. G. Taffe, Free radicals in tumor promotion. Adv. Free Radical Biol. Med. 2, 347–388 (1986).CrossRefGoogle Scholar
  4. 4.
    H. C. Birnboim, DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol myristate acetate. Science 215, 1247 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    R. J. Shamberger, F. F. Baughman, S. L. Kalchert, C. E. Willis, and G. C. Hoffman, Carcinogen-induced chromosomal breakage decreased by antioxidants. Proc. Natl. Acad. Sci. 70. 1461–1468 (1973).PubMedCrossRefGoogle Scholar
  6. 6.
    D. M. Shankel, P. F. Hartman, T. Kada, and H. Hollaender, (Eds.) Mechanisms of Antimutagenesis and Anticarcinogenesis, Plenum Press, New York (1986).Google Scholar
  7. 7.
    E. Heckler, N. E. Fusenig, W. Kunz, F. Marks, and H. W. Thielmann, (Eds.) Cocarcinogenesis and Biological Effects of Tumor Promoters, Raven Press, New York (1982).Google Scholar
  8. 8.
    T. J. Slaga, Overview of Tumor Protection in Animals. Environ. Health Perspect. 50, 3–12 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    C. V. Smith, H. Hughes, B. G. Lauterberg, and J. R. Mitchell, Chemical nature of reactive metabolites determines their biological interactions with glutathione. In Functions of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects (A. Larsson, Ed.) p. 125. Raven Press, New York (1983).Google Scholar
  10. 10.
    W. Troll, G. Witz, B. Goldstein, D. Stone, and T. Sugimura, The role of free oxygen radicals in tumor promotion and carcinogenesis. In Carcinogenesis A Comprehensive Survey (E. Hecker, N. E. Fusenig, W. Kunz, F. Marks, and H. W. Thielmann, Eds.) p. 593. Raven Press, New York (1982).Google Scholar
  11. 11.
    R. G. Harvey, (Ed.) Polycyclic Hydrocarbons and Carcinogenesis, American Chemical Society, ACS Symposium Series No. 283, Washington (1985).Google Scholar
  12. 12.
    P. R. Ortiz De Montellano, O. Augusto, F. Viola, and K. L. Kunze, Carbon radicals in the metabolism of alkyl hydrazines. J. Biol. Chem. 258, 8623–8629 (1983).Google Scholar
  13. 13.
    L. J. Marnett, Hydroperoxide-dependent oxidation during prostaglandin biosynthesis. In Free Radicals in Biology, Volume VI (W. A. Pryor, Ed.) pp. 64–95. Academic Press, New York (1984).Google Scholar
  14. 14.
    P. O. P. Ts’O, W. J. Caspary, and R. J. Lorentzen, The involvement of free radicals in chemical carcinogenesis. In Free Radicals in Biology, Volume III (W. A. Pryor, Ed.) pp. 251–303. Academic Press, New York (1977).Google Scholar
  15. 15.
    W. A. Pryor, F. Y. Tang, R. H. Tang, and D. F. Church, Polar character, rho value for the reaction with toluene, and the effect of radical polarity on the ratio of benzylic hydrogen abstraction to addition to aromatic rings. J. Am. Chem. Soc. 104, 2885–2891 (1982).CrossRefGoogle Scholar
  16. 16.
    W. A. Pryor, D. F. Church, F.Y. Tang, and R.H. Tang, The role of polar effects and bond dissociation energies in radical reactivities. In Frontiers of Free Radical Chemistry (W. A. Pryor Ed.) pp. 355–379. Academic Press, New York (1980).Google Scholar
  17. 17.
    A. A. Frimer, A. Havron, D. Leonov, J. Sperling, and D. Elad, Ultraviolet and gamma ray induced radical reactions of nucleic acid constituents. J. Am. Chem. Soc. 98. 6026–6033 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    J. E. Byfield, Y. C. Lee, and L. R. Bennett, Bonding of small molecules to DNA following izonizing radiation. Nature 225, 859–860 (1970).PubMedCrossRefGoogle Scholar
  19. 19.
    M. F. Zady and J. L. Wong, Kinetics and mechanism of carbon-8 methylation of purine bases and nucleopsides by methyl radical. J. Am. Chem. Soc. 99, 5096–6002 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Sugimori, T. Yamada, H. Ishida, M. Nose, K. Terashima, and N. Oohata, Radiation induced alkylation of quinoline derivatives with alcohol. Bull. Chem. Soc. Japan 59. 3905–3909 (1986).CrossRefGoogle Scholar
  21. 21.
    E. T. Borish, S. Venugopal, W. A. Pryor, and W. A. Deutsch, DNA synthesis is blocked at cigarette tar-induced DNA single strand breaks (in press).Google Scholar
  22. 22.
    W. A. Pryor, K. Uehara, and D. F. Church, The chemistry and biochemistry of the radicals in cigarette smoke: ESR evidence for the binding of the tar radical to DNA and polynucleotides. In Oxygen Radicals in Chemistry and Biology (W. Bors, M. Saran and D. Tait, Eds.) pp. 193–201. Walter de Gruyter & Co., Berlin (1984).CrossRefGoogle Scholar
  23. 23.
    E. T. Borish, J. P. Cosgrove, D. F. Church, W. A. Deutsch, and W. A. Pryor, Cigarette tar causes single strand breaks in DNA. Biochem. Biophvs. Res. Commun. 133, 780 (1985).CrossRefGoogle Scholar
  24. 24.
    E. T. Borish, J. P. Cosgrove, D. F. Church, W. A. Deutsch, and W. A. Pryor, Cigarette smoke, free radicals, and biological damage. In Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine (G. Rotilio, Ed.) p. 467. Elsevier, New York (1986).Google Scholar
  25. 25.
    D. F. Church and W. A. Pryor, The free radical chemistry of cigarette smoke and its toxicological implications. Environ. Health Perspect. 64, 111 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    J. P. Cosgrove, E. T. Borish, D. F. Church, and W. A. Pryor, The metal-mediated formation of hydroxyl radical by aqueous extracts of cigarette tar. Biochem. Biophys. Res. Commun. 132, 390 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    L. Rabow, J. Stubbe, J. W. Kozarich, and J. A. Gerlt, Identification of the alkaline labile product accompanying cytosine reíase during bleomycin mediated degradation of d(CGCGCG). J. Am. Chem. Soc. 108, 7130–7131 (1987).CrossRefGoogle Scholar
  28. 28.
    B. N. Ames, R. L. Saul, E. Schwiers, R. Adelman, and R. Cathcart, Oxidative DNA damage as related to cancer and aging: the assay of thymine glycol, thymidine glycol, and hydroxymethyluracil in human and rat urine. In Molecular Biology of Aging: Gene Stability and Gene Expression. Raven Press, New York (1984).Google Scholar
  29. 29.
    B. Demple and J. Halbrook, Inducible repair of oxidative DNA damage in Escherichia coli. Nature 304, 466 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    K. Houk, Molecular distortions and organic reactivity; additions, cycloadditions, and free radical reactions. In Frontiers of Free Radical Chemistry (W. A. Pryor, Ed.) pp. 43–71. Academic Press, New York (1980).Google Scholar
  31. 31.
    D. S. Sigman, Nuclease activity of 1,10-phenantroline-copper ion. Acc. Chem. Res. 19, 180–186 (1986).CrossRefGoogle Scholar
  32. 32.
    S. M. Hecht, The chemistry of activated bleomycin. Acc. Chem. Res. 19, 383–391 (1986).CrossRefGoogle Scholar
  33. 33.
    W. A. Pryor, Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu. Rev. Physiol. 48. 657–663 (1986).PubMedCrossRefGoogle Scholar
  34. 34.
    D. Kohda, M. Tada, H. Kasai, S. Nishimura, and Y. Kawazoe, Formation of 8-hydroxylguanine residues in cellular DNA exposed to the carcinogen 4-nitroquinoline 1-oxide. Biochem. Biophis. Res. Commun. 139, 626–632 (1986).CrossRefGoogle Scholar
  35. 35.
    M. Tomaz, R. Lipman, D. Chowdary, J. Pawlak, G. L. Verdine, and K. Nakanishi, Isolation and structure of a covalent crosslink adduct between mitomycin C and DNA. Science 235, 1204–1208 (1987).CrossRefGoogle Scholar
  36. 36.
    E. L. Cavalieri and E. G. Rogan, One-electron and two-electron oxidation in aromatic hydrocarbon carcinogenesis. In Free Radicals in Biology, Volume VI (W. A. Pryor, Ed.) pp. 324–370. Academic Press, New York (1984).Google Scholar
  37. 37.
    E. L. Cavalieri and E. G. Rogan, One-electron oxidation in aromatic hydrocarbon carcinogenesis. In Polycyclic Hydrocarbons & Carcinogenesis (R. G. Harvey, Ed.) p. 289. American Chemical Society, Washington, DC (1985).CrossRefGoogle Scholar
  38. 38.
    R. G. Cutler, Antioxidants, aging, and longevity. In Free Radicals in Biology, Volume VI (W. A. Pryor, Ed.) pp. 371–429. Academic Press, New York (1984).Google Scholar
  39. 39.
    W. A. Pryor, The role of free radical reactions in biological systems. In Free Radicals in Biology, Volume I (W. A. Pryor, Ed.) pp. 1–49. Academic Press, New York (1976).Google Scholar
  40. 40.
    W. A. Pryor, Free radicals in biology. The involvement of radical reactions in aging and carcinogenesis. In Medicinal Chemistry V (J. Mathieu, Ed.) pp. 331–345. Elsevier, Amsterdam (1977).Google Scholar
  41. 41.
    W. A. Pryor, The formation of free radicals and the consequences of their reactions in vivo. Photochem. Photobiol. 28, 787–796 (1978).PubMedCrossRefGoogle Scholar
  42. 42.
    W. A. Pryor, Free radical biology: xenobiotics, cancer, and aging. Ann. N. Y. Acad. Sci. 393, 1–30 (1982).PubMedCrossRefGoogle Scholar
  43. 43.
    W. A. Pryor, Free radicals in autoxidation and in aging. Part I. Kinetics of the autoxidation of linoleic acid in SDS micelles: calculations of radical concentrations, kinetic chain lengths, and the effects of vitamin E. Part II. The role of radicals in chronic human diseases and in aging. In Molecular Biology, Aging and Disease (D. Armstrong, R. S. Sohal, R. G. Cutler, and T. F. Slater, Eds.) pp. 13–41. Academic Press, New York (1984).Google Scholar
  44. 44.
    S. A. Lesko, R. J. Lorentzen and P. O. P. Ts’O, Role of superoxide in deoxyribonucleic acid strand scission. Biochemistrv 19, 305 (1980).Google Scholar
  45. 45.
    W. A. Pryor, The role of free radicals in chemical carcinogenesis. In Mechanisms of Antimutagenesis and Anticarcinogenesis (D. Shankel, P. Hartman, T. Kada, and A. Hollaender, Eds.) pp. 45–60. Plenum Press, New York (1986).Google Scholar
  46. 46.
    B. Demple and S. Linn, 5,6-saturated thymine lesions in DNA: production by ultraviolet light or hydrogen peroxide. J. Bacteriol. 153, 1079–1086 (1982).Google Scholar
  47. 47.
    W. A. Pryor, D. L. Fuller, and J. P. Stanley, Reactivity patterns of the methyl radical. J. Am. Chem. Soc. 94, 1632–1638 (1972).CrossRefGoogle Scholar
  48. 48.
    W. A. Pryor, J. T. Echols, and K. Smith, Rates of the reactions of substituted phenyl radicals with hydrogen donors. J. Am. Chem. Soc. 88, 1189–1199 (1966).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • William A. Pryor
    • 1
  1. 1.Biodynamics InstituteLouisiana State UniversityBaton RougeUSA

Personalised recommendations