Advertisement

Isolation and Recombinant Expression of an MHV-JHM Neutralising Monoclonal Antibody

  • Andreas F. Kolb
  • Monika Lechermaier
  • Angehen Heister
  • Atiye Toksoy
  • Stuart G. Siddell
Chapter
  • 28 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 440)

Abstract

The monoclonal antibody A1 (mab A1) efficiently neutralises the infection of susceptible cells by the murine hepatitis virus MHV-JHM in vitro and in vivo (Wege et al., 1984). The variable regions of mab A1 were amplified from mRNA of the respective hybridoma cell line by RT-PCR and integrated into different eukaryotic expression vectors. The biological function of the recombinant antibody constructs was verified by virus neutralisation assays. Whereas a complete recombinant antibody (mab A1rec.) expressed in transfected murine myeloma cells inhibited the MHV-JHM infection as well as the parental antibody, a single-chain Fv derived from mab A1 did not show any neutralising activity.

Keywords

Eukaryotic Expression Vector Virus Plaque Light Chain Protein Virus Dilution Murine Hepatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Enjuanes, L. and van der Zeijst, B.A.M., 1995, Molecular basis of transmissible gastroenteritis virus epidemiology, in: The Coronaviridae (S. G. Siddell, ed.), Plenum Press, New York, pp. 337–376.Google Scholar
  2. Flory, E., Pfleiderer, M., Stuhler, A., and Wege, H., 1993, Induction of protective immunity against coronavirus-induced encephalomyelitis: evidence for an important role of CD8+ T cells in vivo, Eur. J. Immunol. 23: 1757–61.PubMedCrossRefGoogle Scholar
  3. Huston, J.S., Levinson, D., Mudgett-Hunter, M., Tai, M.-S., Novotny, J., Margolies, M.N., Ridge, R.J., Bruccoleri, R.E., Haer, E., Crea, R., and Oppermann, H., 1988, Protein engineerig of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogues produced in Escherichia coli, Proc. Natl. Acad. Sci. USA 85: 5879–5883.PubMedCrossRefGoogle Scholar
  4. Kolb, A.F. and Siddell, S.G., 1996, Genomic targeting with an MBP-Cre fusion protein, Gene 183: 53–60.PubMedCrossRefGoogle Scholar
  5. Kolb, A.F., Maile, J., Heister, A., and Siddell, S.G., 1996, Characterization of functional domains in the human coronavirus HCV 229E receptor, J. Gen. Virol, 2515–2521.Google Scholar
  6. Orlandi, R., Güssow, D.H., Jones, P.T., and Winter, G., 1989, Cloning immunoglobulin domains for expression by the polymerase chain reaction, Proc. Natl. Acad. Sci. USA 86: 3833–3837.PubMedCrossRefGoogle Scholar
  7. Routledge, E., Stauber, R., Pfleiderer, M., and Siddell, S.G., 1991, Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies. J. Virol. 65: 254–262.PubMedGoogle Scholar
  8. Wege, H., Dörries, R., and Wege, H., 1984, Hybridoma antibodies to the murine coronavirus JHM: characterization of epitopes on the peplomer protein E2, J. Gen. Virol. 65: 1913–1941.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Andreas F. Kolb
    • 1
  • Monika Lechermaier
    • 1
  • Angehen Heister
    • 1
  • Atiye Toksoy
    • 1
  • Stuart G. Siddell
    • 1
  1. 1.Institute of Virology and ImmunologyUniversity of WürzburgWürzburgGermany

Personalised recommendations