Advertisement

Processing of the MHV-A59 Gene 1 Polyprotein by the 3C-Like Proteinase

  • M. R. Denison
  • A. C. Sims
  • C. A. Gibson
  • X. T. Lu
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 440)

Abstract

The 3C-like proteinase of mouse hepatitis virus (MHV-3CLpro) is predicted to cleave at least 10 sites in the gene 1 polyprotein, resulting in processing of proteinase, polymerase and helicase proteins from the polyprotein. We have used E. coli expressed recombinant 3CLpro (r3CLpro) to define cleavage sites in carboxy-terminal region of the ORF 1a polyprotein. Polypeptides containing one or more putative 3CLpro cleavage site were translated in vitro from subcloned regions of gene 1, and the polypeptides were incubated with r3CLpro. Analysis of the cleavage products confirmed several putative cleavage sites, as well as identifying cleavage sites not previously predicted by analysis of the MHV sequence. Antibodies directed against a portion of the ORF la polyprotein were used to probe virus infected cells, and detected proteins that correspond to the cleavage sites used by 3CLpro in vitro. These results suggest that MHV 3CLpro cleaves at least 7 sites in the ORF la polyprotein, and that the specificity of 3CLpro for cleavage site dipeptides may be broader than previously predicted.

Keywords

Cleavage Site Infectious Bronchitis Virus Mouse Hepatitis Virus Epidermal Growth Factor Recep Avian Infectious Bronchitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bonilla, P. J., Gorbalenya, A. E., and Weiss, S. R., 1994, Mouse hepatitis virus strain A59 RNA polymerase gene ORF la: heterogeneity among MHV strains, Virology 198: 736–40.PubMedCrossRefGoogle Scholar
  2. Boursnell, M. F. G., Brown, T. D. K., Foulds, I. J., Green, P. F., Tomley, F. M., and Binns, M. M.,1987, Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus, J. Gen. Virol. 68: 57–77.PubMedCrossRefGoogle Scholar
  3. Brierley, I., Digard, P., and Inglis, S. C., 1989, Characterization of an efficient coronavirus ribosomal framshift signal: requirement for an RNA pseudoknot, Cell 57: 537–547.PubMedCrossRefGoogle Scholar
  4. Denison, M. R., Hughes, S. A., and Weiss, S. R., 1995, Identification and characterization of a 65-kDa protein processed from the gene 1 polyprotein of the murine coronavirus MHV-A59, Virology 207: 316–20.PubMedCrossRefGoogle Scholar
  5. Denison, M. R., Zoltick, P. W., Hughes, S. A., Giangreco, B., Olson, A. L., Periman, S., Leibowitz, J. L., and Weiss, S. R., 1992, Intracellular processing of the N-terminal ORF la proteins of the coronavirus MHV-A59 requires multiple proteolytic events, Virology 189: 274–84.PubMedCrossRefGoogle Scholar
  6. Eleouet, J. F., Rasschaert, D., Lambert, P., Levy, L., Vende, P., and Laude, H., 1995, Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus, Virology 206: 817–22.PubMedCrossRefGoogle Scholar
  7. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P., and Blinov, V. M., 1989, coronavirus genome: prediction of putative functional domains in the nonstructural polyprotein by comparative amino acid sequence analysis, Nucleic Acids Res. 17: 4847–4861.PubMedCrossRefGoogle Scholar
  8. Herold, J., Raabe, T., Schelle, P. B., and Siddell, S. G., 1993, Nucleotide sequence of the human coronavirus 229E RNA polymerase locus, Virology 195: 680–91.PubMedCrossRefGoogle Scholar
  9. Lee, H.-J., Shieh, C.-K., Gorbalenya, A. E., Koonin, E. V., LaMonica, N., Tuler, J., Bagdzhadhzyan, A., and Lai, M. M. C., 1991, The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase, Virology 180: 567–582.PubMedCrossRefGoogle Scholar
  10. Liu, D., Xu, H. and Brown, T., 1997, Proteolytic processing of the coronavirus infectious bronchitis virus la polyprotein: identification of a 10-kilodalton polypeptide and determination of its cleavage sites, J Virol 71: 1814–1820.PubMedGoogle Scholar
  11. Liu, D. X. and Brown, T. D. K., 1995, Characterisation and mutational analysis of an ORF la-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus la/lb polyprotein, Virology 209: 420–427.PubMedCrossRefGoogle Scholar
  12. Lu, X., Lu, Y and Denison, M. R., 1996, Intracellular and in vitro translated 27-kDa proteins contain the 3C-like proteinase activity of the coronavirus MHV-A59, Virology 222: 375–382.PubMedCrossRefGoogle Scholar
  13. Lu, Y, Lu, X. and Denison, M. R., 1995, Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59, J Virol 69: 3554–9.PubMedGoogle Scholar
  14. Lu, Y Q. and Denison, M. R., 1997, Determinants of mouse hepatitis virus 3C-like proteinase activity, Virology 230: 335–342.PubMedCrossRefGoogle Scholar
  15. Ziebuhr, J., Herold, J., and Siddell, S. G., 1995, Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity, J Virol 69: 4331–8.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • M. R. Denison
    • 1
    • 2
    • 3
  • A. C. Sims
    • 2
    • 3
  • C. A. Gibson
    • 2
    • 3
  • X. T. Lu
    • 1
    • 3
  1. 1.Department of PediatricsVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of Microbiology and ImmunologyVanderbilt University Medical, CenterNashvilleUSA
  3. 3.Elizabeth B. Lamb Center for Pediatric ResearchVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations